
COPYRIGHT © 2020 SUTTER INSTRUMENT COMPANY. ALL RIGHTS RESERVED.
TRIO™ IS A TRADEMARK OF SUTTER INSTRUMENT COMPANY.

TRIO™ MP-235 Quick Reference

Rev. 2.31k (20201124) (FW v2.2 & 2.3)

Manual Operation

Configuration

Table 1. Configuration Switches 1 – 5.

Sw # Definition State Setting Position

1
X-Axis Knob Rotation for
Forward (+) Movement

Clockwise Off* Up*
Counter On Down

2 Y-Axis Knob Rotation for
Forward (+) Movement

Clockwise Off* Up*
Counter On Down

3 Z-Axis Knob Rotation for
Forward (+) Movement

Clockwise Off* Up*
Counter On Down

4 D-Axis Knob Rotation for
Forward (+) Movement

Clockwise Off* Up*
Counter On Down

5 Y Axis Lock Out for
Homing

Enabled Off Up
Disabled On* Down*

* Normal operation (factory default).
Table 2. Configuration Switches 6 – 10 (Ver. <2.2)

Sw # Definition State Setting Position

6 Sensor Test**
(see Caution)

Enabled Off Up
Disabled On* Down*

7 - 10 Reserved Off* Up*
**CAUTION: To avoid damage to the micromanipulator or stage, DIP
Switch 6 (Sensor Test) must always be set to ON (down).

Table 3. Config. Switches 6 - 10 (Ver. 2.2 & 2.3+)

Sw # Definition State Setting Position

6 Calibration Homing on
Power On

None Off Up
Calibrate On Down*

7 SPEED Select or PULSE
button mode

Speed Select Off* Up*
Pulse On Down

8
Reserved (Ver =<2.2) Off* Up*
ROE Axis knobs active – all
vs. D only (Ver =>2.3)

All Active Off* Up*
D only On Down

9

Y-axis travel length (25 or
12.5 mm)

25mm Off* Up*
12.5mm On Down

10

X-axis travel length (25 or
12.5 mm)

25mm Off* Up*
12.5mm On Down

***CAUTION: To avoid possible equipment damage, always be certain
that Switch 9 and 10 settings correctly match the physical length of
travel of the Y & X axes on the connected device.

HOME: Move to defined home position. Press again to pause/resume.
WORK: Move to defined work position. Press again to pause/resume.
PULSE: Advances diagonal axis in 2.85 µm steps. Hold 3-sec. to enter ANGLE SET
mode (active for 10 sec.) – use Knob D to change angle (0 – 90 degrees).
RELATIVE: Toggles between Relative and Absolute position moves. Hold 3-sec. to
set the relative mode origin to the current absolute position.
SPEED: Cycles through Speed 0 (normal) through 3 (slowest). Hold 3 sec. to enter
LOCK mode.
Setting Home/Work Pos., Relative Mode Origin Pos., & Angle: To set position, hold
down HOME, WORK, & RELATIVE buttons for 3 seconds until beep sounds.
Likewise, set angle with LOCK.
Screen-color mode indications: Green = Absolute position; Blue = Relative posi-
tion; Red = Movement in progress or in quiet (LOCK) mode; knobs disabled.
Movement Knobs Disabling and Quiet (LOCK) Mode: Movement knobs are disa-
bled during movement to Home, Work, external movement command, or while in
quiet (LOCK) Mode.

 D-Axis Movement; selects angle in degrees when in ANGLE SET mode.
Z -Axis

Movement
(Synthet i c)

Y-Ax is
Movement

X -Ax is
Movement

1 2 3 4 5 6 7 8 9 10

TRIO MP-235 SYSTEM QUICK REFERENCE – REV. 2.31K (20201124) (FW V2.2 & 2.3)

2

External Control
Controlling the TRIO MP-235 externally via com-
puter is accomplished by sending commands over
the USB interface between the computer and the
USB connector on the rear panel of the TRIO MP-
235 controller/ROE. The USB device driver for
Windows is downloadable from Sutter Instrument’s
web site (www.sutter.com). The TRIO MP-235 re-
quires Sutter Instrument’s USB CDM (Combined
Driver Model) Version 2.10.00 or higher. The CDM
device driver consists of two device drivers: 1) USB
device driver, and 2) VCP (Virtual COM Port) device
driver. Install the USB device driver first, followed
by the VCP device driver. The VCP device driver
provides a serial RS-232 I/O interface between a
Windows application and the TRIO MP-235. Alt-
hough the VCP device driver is optional, its installa-
tion is recommended even if it is not going to be
used. Once installed, the VCP can be enabled or dis-
abled.
The CDM device driver package provides two I/O
methodologies over which communications with the
controller over USB can be conducted: 1) USB Di-
rect (D2XX mode), or 2) Serial RS-232 asynchronous
via the VCP device driver (VCP mode). The first
method requires that the VCP device driver not be
installed, or if installed, that it be disabled. The sec-
ond method requires that the VCP be installed and
enabled.

Virtual COM Port (VCP) Serial Port Settings: The
following table lists the required RS-232 serial set-
tings for the COM port (COM3, COM5, etc.) gener-
ated by the installation or enabling of the VCP de-
vice driver.

Table 4. USB-VCP interface serial port settings.

Property Setting

Data (“Baud”) Rate (bits per second (bps)) 57600

Data Bits 8
Stop Bits 1
Parity None
Flow Control None

The settings shown in the above table can be set in
the device driver’s properties (via the Device Man-
ager if in Windows) and/or programmatically in your
application.

Protocol and Handshaking: Command sequences do
not have terminators. All commands return an
ASCII CR (Carriage Return; 13 decimal, 0D hexa-
decimal) to indicate that the task associated with
the command has completed. When the controller
completes the task associated with a command, it
sends ASCII CR back to the host computer indicat-
ing that it is ready to receive a new command. If a
command returns data, the last byte returned is the
task-completed indicator.

Command Sequence Formatting: Each command
sequence consists of at least one byte, the first of
which is the “command byte”. Those commands
that have parameters or arguments require a se-
quence of bytes that follow the command byte. No
delimiters are used between command sequence ar-
guments, and command sequence terminators are
not used. Although most command bytes can be ex-
pressed as ASCII displayable/printable characters,
the rest of a command sequence must generally be
expressed as a sequence of unsigned byte values (0-
255 decimal; 00 – FF hexadecimal, or 00000000 –
11111111 binary). Each byte in a command se-
quence transmitted to the controller must contain
an unsigned binary value. Attempting to code com-
mand sequences as “strings” is not advisable. Any
command data returned by the controller should be
initially treated as a sequence of unsigned byte val-
ues upon reception. Groups of contiguous bytes can
later be combined to form larger values, as appro-
priate (e.g., 2 bytes into 16-bit “word”, or 4 bytes
into a 32-bit “long” or “double word”). For the
TRIO MP-235, all axis position values (number of
microsteps) are stored as “unsigned long” 32-bit
positive-only values, and each is transmitted and re-
ceived to and from the controller as four contiguous
bytes.
Axis Position Command Parameters: All axis posi-
tional information is exchanged between the con-
troller and the host computer in terms of mi-
crosteps. Conversion between microsteps and mi-
crons (micrometers) is the responsibility of the
software running on the host computer (see Mi-
crons/microsteps conversion table for conversion
factors).

Microsteps are stored as positive 32-bit values
(“long” (or optionally, “signed long”), or “unsigned
long” for C/C++; “I32” or “U32” for LabVIEW).
“Unsigned” means the value is always positive; neg-
ative values are not allowed. The positive-only val-
ues can also be stored in signed type variables, in
which case care must be taken to ensure that only
positive values are exchanged with the controller.

The 32-bit value consists of four contiguous bytes,
with a byte/bit-ordering format of Little Endian
(“Intel”) (most significant byte (MSB) in the first
byte and least significant (LSB) in the last byte). If
the platform on which your application is running is
Little Endian, then no byte order reversal of axis
position values is necessary. Examples of platforms
using Little Endian formatting include any system
using an Intel/AMD processor (including Microsoft
Windows and Apple Mac OS X).
If the platform on which your application is running
is Big Endian (e.g., Motorola PowerPC CPU), then
these 32-bit position values must have their bytes

http://www.sutter.com/

TRIO MP-235 SYSTEM QUICK REFERENCE – REV. 2.31K (20201124) (FW V2.2 & 2.3)

3

reverse-ordered after receiving from, or before send-
ing to, the controller. Examples of Big-Endian plat-
forms include many non-Intel-based systems, Lab-
VIEW (regardless of operating system & CPU), and
Java (programming language/environment).
MATLAB and Python (script programming lan-
guage) are examples of environments that adapt to
the system on which each is running, so Little-
Endian enforcement may be needed if running on a
Big-Endian system. Some processors (e.g., ARM) can
be configured for specific endianess.
Microsteps and Microns (Micrometers): All coordi-
nates sent to and received from the controller are in
microsteps. To convert between microsteps and mi-
crons (micrometers), use the following conversion
factors (multipliers):

Table 5. Microns/microsteps conversion.

System/Device From/To Units Conversion Factor
(multiplier)

TRIO MP-235 with
TRIO MP-235/M mi-

cromanipulator

µsteps  µm 0.09375

µm  µsteps 10.66666666667

For accuracy in your application, type these conver-
sion factors as “double” (avoid using the “float” type

as it lacks precision with large values). When con-
verting to microsteps, type the result as a 32-bit
“unsigned long” (C/C++), “uint32” (MATLAB), or
“U32” (LabVIEW) integer (positive only) value.
When converting to microns, type the result as a
“double” (C/C++, MATLAB) or “DBL” (LabVIEW)
64-bit double-precision floating-point value.

Table 6. Ranges and bounds.

Device Axis Millimeters Microns Microsteps

TRIO MP-235/M
X & Y 25 0 – 25,000 0 – 266,667

D 50 0 – 50,000 0 – 533,334

Command Reference: The following table lists all
the external-control commands for the TRIO
MP-235.

Table 7. TRIO MP-235 external control commands.

Command Tx/-
Delay/-

Rx

Ver
.

Total
Bytes

Byte
Offset
(Len.)

Value Alt-
key-

pad #

Ctrl-
char

ASCII
def./-
char.

Description

Dec. Hex. Binary

Get Current
Position and
Angle (‘c’ or
‘C’)

Tx All 1 0 99
or
67

63
or
43

0110 0011
or

0100 0011

0099
or
0043

 ‘c’
or
‘C’

Returns the current positions
(µsteps) of X, Y, & D axes

Rx. All 14 Three 4-byte (32-bit) values (current positions in µsteps of X, Y, & D), + 1 byte
for completion indicator. See Ranges table for minimum and maximum values.

 0 (4) X pos. in µsteps

 4 (4) Y pos. in µsteps

 8 (4) D pos. in µsteps

 12 13 0D 0000 1101 ^M <CR> Completion indicator

Move to
HOME Posi-
tion (‘h’)

Tx All 1 0 104 68 0110 1000 0104 ‘h’ Moves to the position saved for the
controller’s HOME button.

Rx All 1 0 13 0D 0000 1101 <CR> Completion indicator

Move to
WORK Posi-
tion (‘w’)

Tx All 1 0 119 77 0111 0111 0119 ‘w’ Moves to the position saved for the
controller’s WORK button.

Rx All 1 0 13 0D 0000 1101 <CR> Completion indicator

Move to speci-
fied X axis
Position (‘x’
or ‘X’)

Tx All 5 0 120
or
90

78
or
5A

0111 1000
or

0101 1010

0120
or
0090

 ‘x’
or
‘X’

Move X axis to specified position
(see Ranges table)

 1 (4) X µsteps

 Rx All 1 0 13 0D 0000 1101 <CR> Completion indicator

Move to speci-
fied Y axis
Position (‘y’
or ‘Y’)

Tx All 5 0 121
or
91

79
or
5B

0111 1001
or

0101 1011

0121
or
0091

 ‘y’
or
‘Y’

Move Y axis to specified position
(see Ranges table)

 1 (4) Y µsteps

TRIO MP-235 SYSTEM QUICK REFERENCE – REV. 2.31K (20201124) (FW V2.2 & 2.3)

4

Command Tx/-
Delay/-

Rx

Ver
.

Total
Bytes

Byte
Offset
(Len.)

Value Alt-
key-

pad #

Ctrl-
char

ASCII
def./-
char.

Description

Dec. Hex. Binary

 Rx All 1 0 13 0D 0000 1101 <CR> Completion indicator

Move to speci-
fied D axis
Position (‘d’
or ‘D’)

Tx All 5 0 100
or
68

64
or
44

0110 0100
or

0100 0100

0100
or
0068

 ‘d’
or
‘D’

Move D-axis to specified position
(see Ranges table)

 1 (4) D µsteps

 Rx All 1 0 13 0D 0000 1101 <CR> Completion indicator

NOTES:

1. Task-Complete Indicator: All commands will send back to the
computer the “Task-Complete Indicator” to signal the com-
mand and its associated function in controller is complete.
The indicator consists of one (1) byte containing a value of 13
decimal (0D hexadecimal), and which represents an ASCII
CR (Carriage Return).

2. Intercommand Delay: A short delay (usually around 2 ms) is
recommended between commands (after sending a command
sequence and before sending the next command).

3. Clearing Send/Receive Buffers: Clearing (purging) the trans-
mit and receive buffers of the I/O port immediately before
sending any command is recommended.

4. Positions in Microsteps and Microns: All positions sent to and
received from the controller are in microsteps (µsteps). See
Microns/microsteps conversion table) for conversion between
µsteps and microns (micrometers (µm)).

Declaring position variables in C/C++:
/* current position for X, Y, & D */
unsigned long cp_x_us, cp_y_us, cp_d_us; /* mi-
crosteps */
double cp_x_um, cp_y_um, cp_d_um; /* mi-
crons */
/* specified (move-to) position for X, Y, & D */
unsigned long sp_x_us, sp_y_us, sp_d_us; /* mi-
crosteps */
double sp_x_um, sp_y_um, sp_d_um; /* mi-
crons */
Use the same convention for other position variables the applica-
tion might need.
Declaring the microsteps/microns conversion factors in C/C++:
/* conversion factors for the TRIO MP-235/M based
config. */
double us2umCF = 0.09375; /* microsteps to
microns */
double um2usCF = 10.66666666667; /* microns to
microsteps */

Converting between microsteps and microns in C/C++:
/* converting X axis current position */
cp_x_um = cp_x_us * us2umCF; /* microsteps to
microns */
cp_x_us = cp_x_um * um2usCF; /* microns to mi-
crosteps */
Do the same for Y & D, and for any other position sets used in the
application.

5. Ranges and Bounds: See Ranges and Bounds table for exact
minimum and maximum values for each axis of each compat-
ible device that can be connected. All move commands must
include positive values only for positions – negative positions
must never be specified. All positions are absolute as meas-
ured from the physical beginning of travel of a device’s axis.
In application programming, it is important that positional
values be checked (>= 0 and <= max.) to ensure that a neg-
ative absolute position is never sent to the controller and that
end of travel is not exceeded. All computational relative posi-
tioning must always resolve to accurate absolute positions.

Declaring minimum and maximum absolute position variables in
C/C++:
/* minimum and maximum positions for X, Y, & D */
double min_x_um, min_y_um, min_d_um; /* minimum
microns */
double max_x_um, max_y_um, max_d_um; /* maximum
microns */
Set minimum and maximum absolute positions for each axis – see
Ranges & Bounds table.
/* initialize all minimum positions in microns*/
min_x_um = 0;
min_y_um = 0;
min_d_um = 0;
/* initialize all maximum positions in microns*/
/* TRIO MP-235/M */
max_x_um = 25000;
max_y_um = 25000;
max_d_um = 50000;

6. Absolute Positioning System Origin: The Origin is set to a
physical position of travel to define absolute position 0. The
physical Origin position is fixed at beginning of travel (BOT).
This means that all higher positions (towards end of travel
(EOT)) are positive values; there are no lower positions and
therefore no negative values are allowed.

7. Absolute vs. Relative Positioning: Current position (‘c’) and
move commands always use absolute positions. All positions
can be considered “relative” to the Origin (Position 0), but all
are in fact absolute positions. Any position that is considered
to be “relative” to the current position, whatever that might
be, can be handled synthetically by external programming.
However, care should be taken to ensure that all relative po-
sition calculations always result in correct positive absolute
positions before initiating a move command.

Declaring relative position variables in C/C++:
/* relative positions for X, Y, & D */
double rp_x_um, rp_y_um, rp_d_um; /* microns */
/* initialize all relative positions to 0 after
declaring them */
rp_x_um = rp_y_um = rp_d_um = 0;

Enter any positive or negative value for each relative position
(e.g., rp_x_um = 1000; rp_y_um = 500; rp_d_um = -500 … etc.

For each axis, check to make sure that the new resultant absolute
position (to which to move) is within bounds. Reset the relative
position to 0 if not. If relative value is negative, its positivized val-
ue must not be greater than the current position. Otherwise, if
positive, adding current position with relative position must not
exceed the maximum position allowed. If out of bounds, resetting
relative position to 0 allow the remaining conversions and move-
ment to resolve without error.
/* check to make sure that relative X is within
bounds */
if ((rp_x_um < 0 && abs(rp_x_um) > cp_x_um) ||
 (cp_x_um + rp_x_um > max_x_um)) /* out of
bounds? */

TRIO MP-235 SYSTEM QUICK REFERENCE – REV. 2.31K (20201124) (FW V2.2 & 2.3)

5
 rp_x_um = 0; /* yes, so reset relative pos.
to 0 */
Repeat the above bounds check for each of the remaining axes.

For each axis, calculate new absolute position in microns and then
convert to microsteps before issuing a move command.
/* convert X relative position to absolute posi-
tion */
sp_x_um = cp_x_um + rp_x_um; /* add relative pos.
to current pos. */
/* convert new absolute X position in microns to
microsteps */
sp_x_us = sp_x_um * um2usCF;
Repeat for each of the remaining axes as required before issuing a
move command.

8. Position Value Typing: All positions sent and received to and
from the controller are in microsteps and consist of 32-bit in-
teger values (four contiguous bytes). Position values in mi-
crosteps are always positive, so data type must be an “un-
signed” integer that can hold 32 bits of data. Although each
positional value is transmitted to, or received from, the con-
troller as a sequence of four (4) contiguous bytes, for comput-
er application computational and storage purposes each
should be typed as an unsigned 32-bit integer (“unsigned
long” in C/C++, “uint32” in MATLAB, “U32” in LabVIEW,
etc.).

Position values in microns (micrometers or µm) should be da-
ta typed as double-precision floating point variables (“dou-
ble” in C/C++ and MATLAB, “DBL” in LabVIEW, etc.).

Note that in Python, incorporating the optional NumPy
package brings robust data typing like that used in C/C++ to
your program, simplifying coding and adding positioning ac-
curacy to the application.

9. Position Value Bit Ordering: All 32-bit position values
transmitted to, and received from, the controller must be
bit/byte-ordered in “Little Endian” format. This means that
the least significant bit/byte is last (last to send and last to
receive). Byte-order reversal may be required on some plat-
forms. Microsoft Windows, Intel-based Apple Macintosh sys-

tems running Mac OS X, and most Intel/AMD processor-
based Linux distributions handle byte storage in Little-
Endian byte order so byte reordering is not necessary before
converting to/from 32-bit “long” values. LabVIEW always
handles “byte strings” in “Big Endian” byte order irrespec-
tive of operating system and CPU, requiring that the four
bytes containing a microsteps value be reverse ordered be-
fore/after conversion to/from a multibyte type value (I32,
U32, etc.). MATLAB automatically adjusts the endianess of
multibyte storage entities to that of the system on which it is
running, so explicit byte reordering is generally unnecessary
unless the underlying platform is Big Endian. If your devel-
opment platform does not have built-in Little/Big Endian
conversion functions, bit reordering can be accomplished by
first swapping positions of the two bytes in each 16-bit half of
the 32-bit value, and then swap positions of the two halves.
This method efficiently and quickly changes the bit ordering
of any multibyte value between the two Endian formats (if
Big Endian, it becomes Little Endian, and if Little Endian, it
becomes then Big Endian).

10. Travel Lengths and Durations: “Move” commands might
have short to long distances of travel. If not polling for return
data, an appropriate delay should be inserted between the
sending of the command sequence and reception of return da-
ta so that the next command is sent only after the move is
complete. This delay can be auto calculated by determining
the distance of travel (difference between current and target
positions) and rate of travel. This delay is not needed if poll-
ing for return data. In either case, however, an appropriate
timeout must be set for the reception of data so that the I/O
does not time out before the move is made and/or the delay
expires.

11. Angle Setting & Movement: Although the set angle command
allows for a range of 0° to 90°, the effective range that allows
full movement is 1° to 89° (>0° and <90°). If 0° or 90°, Z or X
axis fails to move, causing single- and multi-axis movement
commands to fail. The ideal range for smooth movement is
10° to 80°. Factory default is 30°.

NOTES:

TRIO MP-235 SYSTEM QUICK REFERENCE – REV. 2.31K (20201124) (FW V2.2 & 2.3)

6

NOTES:

	Manual Operation
	Configuration
	External Control

