

COPYRIGHT © 2020 SUTTER INSTRUMENT. ALL RIGHTS RESERVED.

MPC-325 Series Micromanipulator System

Quick Reference
Rev. 3.21k (20201123)

Manual Operation
NORM/DIAG: Normal or
Diagonal (LED on) mode.
WORK POS: Moves to de-
fined Work Position. Hold
>2 sec., lock/unlocks ROE.
STOP/SET: Stops move-
ment. Hold down and press
WORK sets Work pos. to
current pos.
HOME: Moves to position
0,0,0.
Display: Shows current
position along with other
state information.

MANIPULATOR: Selects
Manipulator 1 through 4 (as
connected).
MODE: Selects Mode 0
through 9, or 0 and 5 (ROE
Switch 1 OFF).
X-Axis Movement Knob:

Z-Axis Movement Knob:

Y-Axis Movement Knob:

CENTER (CALIBRATE):

Configuration

Table 1. ROE-200 configuration switches (rear).

Switch # Definition State Setting Position

1 Modes
All modes ON DOWN

Mode 0 and 5 OFF UP

2 Relative coordinates during
Diagonal Mode

Enabled ON DOWN

Disabled OFF UP

3 Manipulator selection
Not cyclical ON DOWN

Cyclical OFF UP

4 Reserved ON DOWN

Table 2. MPC-200 rear-panel config. Switches 1 – 4 (angle setting) for Device, A
or B.

Steepness Relative
to 45°

Angle
Switch

(Value)
1 2 3 4

More

11 0 0 0 0 0
14 1 0 0 0 1
21 0 1 0 0 2
27 1 1 0 0 3
29 0 0 1 0 4
35 1 0 1 0 5
39 0 1 1 0 6

None 45 1 1 1 0 7

Less

39 0 0 0 1 8
35 1 0 0 1 9
29 0 1 0 1 10
27 1 1 0 1 11
21 0 0 1 1 12
14 1 0 1 1 13
11 0 1 1 1 14
7 1 1 1 1 15

0 = OFF (Up); 1 = ON (Down)

2

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

Table 3. MPC-200 rear-panel config. Switches 5 – 8 for Device A or B.

Switch # Definition State Setting Position

5 X-axis knob rotation for for-
ward movement

Clockwise * ON DOWN

Counterclockwise OFF UP

6 Y-axis knob rotation for for-
ward movement

Clockwise * ON DOWN

Counterclockwise OFF UP

7
Z-axis knob rotation for for-
ward movement

Clockwise * ON DOWN

Counterclockwise OFF UP

8
Y-Axis lockout during HOME
& WORK position moves

Y is moved ON DOWN

Y not moved ** OFF UP
* Normal operation (factory default).
** Normal operation (factory default) in MPC-365 series systems.

RIGHT
TRANS

Table 4. MPC-200 rear-panel RIGHT TRAN config. switches for Device A or B.

Switch # Definition State Setting Position

1 Manipulator A right angle
installed state

Installed ON DOWN

Not installed * OFF UP

2
Manipulator B right angle
installed state

Installed ON DOWN

Not installed * OFF UP
* Normal operation (factory default).

External Control
Controlling the MPC-325 externally via computer is
accomplished by sending commands to the MPC-200
controller over the USB interface between the com-
puter and the USB connector on the rear of the
ROE-200 that’s connected to the MPC-200 control-
ler. The USB device driver for Windows is down-
loadable from Sutter Instrument’s web site
(www.sutter.com). The MPC-325 (MPC-200) re-
quires USB CDM (Combined Driver Model) Version
2.10.00 or higher. The CDM device driver for the
MPC-325 (MPC-200) consists of two device drivers:
1) USB device driver, and 2) VCP (Virtual COM
Port) device driver. Install the USB device driver
first, followed by the VCP device driver. The VCP
device driver provides a serial RS-232 I/O interface
between a Windows application and the MPC-325
(MPC-200). Although the VCP device driver is op-
tional, its installation is recommended even if it is
not going to be used. Once installed, the VCP can be
enabled or disabled.
The CDM device driver package provides two I/O
methodologies over which communications with the
controller over USB can be conducted: 1) USB Di-
rect (D2XX mode), or 2) Serial RS-232 asynchronous
via the VCP device driver (VCP mode). The first
method requires that the VCP device driver not be
installed, or if installed, that it be disabled. The sec-
ond method requires that the VCP be installed and
enabled.
Virtual COM Port (VCP) Serial Port Settings: The
following table lists the required RS-232 serial set-
tings for the COM port (COM3, COM5, etc.) gener-
ated by the installation or enabling of the VCP de-
vice driver.

Table 5. USB-VCP interface serial port settings.

Property Setting

Data (“Baud”) Rate (bits per second (bps)) 128000

Data Bits 8
Stop Bits 1
Parity None
Flow Control None

The settings shown in the above table can be set in
the device driver’s properties (via the Device Man-
ager if in Windows) and/or programmatically in your
application.
Protocol and Handshaking: Command sequences do
not have terminators. All commands return an
ASCII CR (Carriage Return; 13 decimal, 0D hexa-
decimal) to indicate that the task associated with
the command has completed. When the controller
completes the task associated with a command, it
sends ASCII CR back to the host computer indicat-
ing that it is ready to receive a new command. If a
command returns data, the last byte returned is the
task-completed indicator.
Command Sequence Formatting: Each command
sequence consists of at least one byte, the first of
which is the “command byte”. Those commands
that have parameters or arguments require a se-
quence of bytes that follow the command byte. No
delimiters are used between command sequence ar-
guments, and command sequence terminators are
not used. Although most command bytes can be ex-
pressed as ASCII displayable/printable characters,
the rest of a command sequence must generally be
expressed as a sequence of unsigned byte values (0-
255 decimal, 00 – FF hexadecimal, or 00000000 –
11111111 binary). Each byte in a command se-

http://www.sutter.com/

3

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

quence transmitted to the controller must contain
an unsigned binary value. Attempting to code com-
mand sequences as “strings” is not advisable. Any
command data returned by the controller should be
initially treated as a sequence of unsigned byte val-
ues upon reception. Groups of contiguous bytes can
later be combined to form larger values, as appro-
priate (e.g., 2 bytes into 16-bit “word”, or 4 bytes
into a 32-bit “long” or “double word”). For the
MPC-200, all axis position values (number of mi-
crosteps) are stored as “unsigned long” 32-bit posi-
tive-only values, and each is transmitted and re-
ceived to and from the controller as four contiguous
bytes.

Axis Position Command Parameters: All axis posi-
tional information is exchanged between the con-
troller and the host computer in terms of mi-
crosteps. Conversion between microsteps and mi-
crons (micrometers) is the responsibility of the
software running on the host computer (see Mi-
crons/microsteps conversion table for conversion
factors).

Microsteps are stored as positive 32-bit values
(“long” (or optionally, “signed long”), or “unsigned
long” for C/C++; “I32” or “U32” for LabVIEW).
“Unsigned” means the value is always positive; neg-
ative values are not allowed. The positive-only val-
ues can also be stored in signed type variables, in
which case care must be taken to ensure that only
positive values are exchanged with the controller.
The 32-bit value consists of four contiguous bytes,
with a byte/bit-ordering format of Little Endian
(“Intel”) (most significant byte (MSB) in the first
byte and least significant (LSB) in the last byte). If
the platform on which your application is running is
Little Endian, then no byte order reversal of axis
position values is necessary. Examples of platforms
using Little Endian formatting include any system
using an Intel/AMD processor (including Microsoft
Windows and Apple Mac OS X).

If the platform on which your application is running
is Big Endian (e.g., Motorola PowerPC CPU), then
these 32-bit position values must have their bytes
reverse-ordered after receiving from, or before send-
ing to, the controller. Examples of Big-Endian plat-
forms include many non-Intel-based systems, Lab-
VIEW (regardless of operating system & CPU), and
Java (programming language/environment).
MATLAB and Python (script programming lan-
guage) are examples of environments that adapt to
the system on which each is running, so Little-
Endian enforcement may be needed if running on a
Big-Endian system. Some processors (e.g., ARM) can
be configured for specific endianess.
Microsteps and Microns (Micrometers): All coordi-
nates sent to and received from the controller are in
microsteps. To convert between microsteps and mi-

crons (micrometers), use the following conversion
factors (multipliers):

Table 6. Microns/microsteps conversion factors (multipliers).

Device From/To Units Conversion Factor
(multiplier)

MP-225/M*
micromanipulator

µsteps  µm 0.0625
µm  µsteps 16

* Same applies to MP-285/M & MP-265/M micromanipulator,
3DMS & MPC-78 stages, and MOM & SOM microscope objective
movers. Other devices:

• MP-x45[S]/M & MP-865/M µmanipulators and MPC-x8 series
stages: 1 µstep = 0.046875 µm; 1 µm = 21.333333333 µsteps.

• MT-800-based translators:
 1 µstep = 0.078125 µm; 1 µm = 12.8 µsteps.

For accuracy in your application, type these conver-
sion factors as “double” (avoid using the “float” type
as it lacks precision with large values). When con-
verting to microsteps, type the result as a 32-bit
“unsigned long” (C/C++), “uint32” (MATLAB), or
“U32” (LabVIEW) integer (positive only) value.
When converting to microns, type the result as a
“double” (C/C++, MATLAB) or “DBL” (LabVIEW)
64-bit double-precision floating-point value.

Table 7. Travel distances and bounds.

Device Axis Len.
(mm)

Microns
(Microme-
ters (µm))

Microsteps
(µsteps)

MP-225/M *
X 25mm 0 – 25,000 0 – 266,667
Y 25mm 0 – 25,000 0 – 266,667
Z 25mm 0 – 25,000 0 – 266,667

* Same applies to MP-285/M µmanipulators, 3DMS & MPC-78-
series stages, & SOM objective mover. Other devices:

• TRIO MP-x45/M series micromanipulator and MPC-x8 series
stages: 25mm (533,333 microsteps) for X, Y, & Z. (Requires
firmware v3.19+.)

• TRIO MP-865/M micromanipulator: 50mm for X, 12.5mm for
Y, and 25mm for Z. (Requires firmware v3.21+.)

• MP-265/M micromanipulator: 25mm for X & Z, 12.5mm for Y.
(Discontinued product – replaced by TRIO MP-865/M.)

• MT-8x0 (MT-22xx) series translator: 22mm in all three axes.
Only X & Y are connected (Z can be optionally connected to an-
other device (e.g., a focus drive)).

• MOM objective mover (firmware v3.13 or 3.16, and device Port
A only): 21.5mm in all three axes.

Travel Speed: The following table shows the travel
speeds for single-, double-, and triple-axis move-
ments for supported devices using orthogonal move
commands.

Table 8. Travel speeds.

Device
mm/sec or µm/ms

Single Axis Dual Axis
(x 1.4)

Triple Axis
(x 1.7)

MP-225/M * 3 4.2 5.1

* Applies also to the MP-245[S]/M, MP-845[S]/M, MP-865/M. &
MP-265/M µmanipulators; and MPC-x8 series stages.
NOTE: The MP-285/M has a single-axis speed of 5 mm/sec., 7 for
double axis, and 8.5 for triple-axis movement. The same applies
also to the 3DMS & MPC-78 stages, MT-800-based translators,
and SOM & MOM objective movers.

4

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

Command Reference: The following table lists all
the external-control commands for the MPC-325

(MPC-200).

Table 9. MPC-200 controller external-control commands.

Command Tx/-
Delay/-

Rx

Ver. Total
Bytes

Byte
Offset
(Len.)

Value Alt-
key-

pad #

Ctrl-
char

ASCII
def./-
char.

Description
Dec. Hex. Binary

Get Connected-
Devices Status
(‘A’) (FW <3)

Tx <3 1 0 65 41 0100 0001 0065 A Returns the number of devices con-
nected (0-4).
NOTE: This command is replaced by
(‘U’) command in Firmware Ver. 3 and
above (described next).

 Rx <3 0 Zero bytes = no devices connected. ROE displays “NO MANIPULATOR CON-
NECTED”.

 Rx <3 2 0 1
-
4

01
-
04

0000 0000
–

0000 0100

 ^A
-
^D

<SOH>
-

<EOT>

Number of devices connected

 1 13 0D 0000 1101 ^M <CR> Completion indicator

Get Connected-
Devices Status
(‘U’)
(FW 3+)

Tx 3+ 1 0 85 55 1000 0101 0085 U Returns the number of devices con-
nected (0-4), and the connected sta-
tus of Ports 1 - 2 (1st controller) and
3 - 4 (2nd controller daisy chained to
the first).
NOTE: This command replaces the pre-
vious command (‘A’) in Firmware Ver. 3
and above.

Rx 3+ 0 Zero bytes = no devices connected. ROE displays “NO MANIPULATOR CON-
NECTED”.

 Rx 3+ 6 0 1
-
4

01
-
04

0000 0000
–

0000 0100

 ^A
-
^D

<SOH>
-

<EOT>

Number of devices connected

 Device # Connected Status

1
0 0 0000 0000 ^@ <NUL> 1: No

 1 1 0000 0001 ^A <SOH> 1: Yes

2
0 0 0000 0000 ^@ <NUL> 2: No

 1 1 0000 0001 ^A <SOH> 2: Yes

3
0 0 0000 0000 ^@ <NUL> 3: No

 1 1 0000 0001 ^A <SOH> 3: Yes

4
0 0 0000 0000 ^@ <NUL> 4: No

 1 1 0000 0001 ^A <SOH> 4: Yes
 5 13 0D 0000 1101 ^M <CR> Completion indicator

Get Active De-
vice & Firm-
ware Version
(‘K’)

Tx All 1 0 75 4B 0100 1011 0075 K Command

Rx <3 2 0 1
-
4

01
-
04

0000 0000
–

0000 0100

 ^A
-
^D

<SOH>
-

<EOT>

Currently-active device (1 – 4).

 1 13 0D 0000 1101 ^M <CR> Task-completion indicator

 Rx 3+ 4 0 1
-
4

01
-
04

0000 0000
–

0000 0100

 ^A
-
^D

<SOH>
-

<EOT>

Currently-active device (1 – 4).

 1 Minor version number coded in BCD (e.g., if ver. = 3.15, then byte = 0x15
(upper nibble = 1; lower nibble = 5))

 2 Major version number coded in BCD (e.g., if ver. = 3.15, then byte = 0x03
(upper nibble = 0; lower nibble = 3))

 3 13 0D 0000 1101 ^M <CR> Completion indicator

5

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

Command Tx/-
Delay/-

Rx

Ver. Total
Bytes

Byte
Offset
(Len.)

Value Alt-
key-

pad #

Ctrl-
char

ASCII
def./-
char.

Description
Dec. Hex. Binary

Get Current
Position (‘C’)

Tx All 1 0 67 43 0100 0011 0067 C Command

Rx 14 0 1-4 01
-
04

0000 0000
–

0000 0100

 ^A
-
^D

<SOH>
-

<EOT>

Drive number (1 – 4) to which the
current position applies

 Three 4-byte (32-bit) values (current positions in µsteps of X, Y, & Z) + 1
byte for completion indicator. See Ranges table for minimum and maximum
values.

 1-4
(4)

 X pos. in µsteps

 5-8
(4)

 Y pos. in µsteps

 9-12
(4)

 Z pos. in µsteps

 13 13 0D 0000 1101 ^M <CR> Completion indicator

Change Active
Device (‘I’)

Tx All 2 0 73 49 0100 1001 0073 I Command
 1 1-4 01

-
04

0000 0001
-

0000 0100

0001
-

0004

^A
-
^D

<SOH>
-

<EOT>

Device number (by value) to change
(1 through 4)

 Rx 1 -
1.05

1 0 13 0D 0000 1101 ^M <CR> Task-completion indicator

 Rx 1.06
+

2 0 1-4
or
69

01
-
04
or
45

0000 0001
-

0000 0100
or

0100 0101

 ^A
-
^D

<1>
-
<4>
or
‘E’

If device specified exists, then device
number (1-4) is returned. Otherwise,
‘E’ (error) is returned.

 1 13 0D 0000 1101 ^M <CR> Completion indicator

Move to Home
Position1 (‘H’)

Tx All 1 0 72 48 0100 1000 0072 H Command

Rx All 1 0 13 0D 0000 1101 ^M <CR> Completion indicator

Move to Work
Position 2 (‘Y’)

Tx All 1 0 89 59 0101 1001 0089 Y Command

Rx All 1 0 13 0D 0000 1101 ^M <CR> Completion indicator

Move to Center
Position (‘N’)
(FW <=1.03)

Tx <=
1.03

1 0 78 4E 0100 1110 0078 N Command: Moves active device to
the center of travel position.

Rx All 1 0 13 0D 0000 1101 ^M <CR> Completion indicator

Calibrate (‘N’)
(FW >1.03)

Tx >
1.03

1 0 78 4E 0100 1110 0078 N Command: Calibrates the active de-
vice.

Rx All 1 0 13 0D 0000 1101 ^M <CR> Completion indicator

Move to Speci-
fied Position
Orthogonally at
Full Speed
(‘M’)

Tx All 13 0 77 4D 0100 1101 0077 M Moves X, Y, and Z to specified posi-
tion (stereotypic at fastest speed)

 X, Y, & Z target absolute positions, in microsteps, each consisting of 4 contig-
uous bytes representing a single 32-bit positive integer value (see Ranges
table).

 1-4
(4)

 X µsteps

 5-8
(4)

 Y µsteps

 9-12
(4)

 Z µsteps

 =>
30ms

 Time of travel (see Notes)

 Rx All 1 0 13 0D 0000 1101 ^M <CR> Completion indicator

1 The “Home Position” is defined manually on the ROE-200.
2 The “Work Position” is defined manually on the ROE-200.

6

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

Command Tx/-
Delay/-

Rx

Ver. Total
Bytes

Byte
Offset
(Len.)

Value Alt-
key-

pad #

Ctrl-
char

ASCII
def./-
char.

Description
Dec. Hex. Binary

Move to Speci-
fied Position in
a Straight Line
at Specified
Speed (‘S’)

Tx 3+ 14 0 83 53 0101 0011 0083 S Command

 1 0
-
15

00
–
0F

0000 0000
–

0000 FFFF

0000
–

0015

^@
-
^O

<NUL>
-

<SI>

Velocity (0 = slowest,
 15 = fastest)
(See Notes)

30ms
 Required delay between Veloci-

ty byte and remaining bytes
 Tx X, Y, & Z target absolute positions, in microsteps, each consisting of 4 contig-

uous bytes representing a single 32-bit positive integer value (see Ranges
table).

 2-5
(4)

 X µsteps

 6-9
(4)

 Y µsteps

 10-13
(4)

 Z µsteps

 =>
30ms

 Time of travel (see Notes)

 Rx 1 0 13 0D 0000 1101 ^M <CR> Completion indicator (streaming
positional data is OFF – see ‘F’
command) once movement com-
pletes; or, streaming current posi-
tion data (see ‘O’ command) and
then completion indicator once
movement completes. (See ‘S’ Com-
mand’s Streaming Return Data for Cur-
rent Position note.)

Interrupt Move
(^C)

Tx All 1 0 3 03 0000 0111 0003 ^C <ETX> Interrupts a move in progress that
was previously initiated by any move
command.

 Rx 1 0 13 0D 0000 1101 ^M <CR> Completion indicator

Turn OFF
S-Move com-
mand stream-
ing data (‘F’)

Tx 3+ 1 0 70 46 0100 0110 F Command (see ‘S’ Command’s Stream-
ing Return Data for Current Position
note)

Rx 1 0 13 0D 0000 1101 ^M <CR> Completion indicator

Turn ON
S-Move com-
mand stream-
ing data (‘O’)

Tx 3+ 1 0 79 4F 0100 1111 O Command (see ‘S’ Command’s Stream-
ing Return Data for Current Position
note)

Rx 1 0 13 0D 0000 1101 ^M <CR> Completion indicator

Set ROE
MODE (‘L’)

Tx All 2 0 76 4C 0100 1100 0076 L Command
 1 0-9 0-9 0000 0000

-
0000 1001

0000
–

0009

 Mode 0 - 9 (coarsest/fastest to fin-
est/slowest)

 Rx All 1 0 13 0D 0000 1101 ^M <CR> Task-completion indicator

NOTES:

1. Task-Complete Indicator: All commands will send back to the
computer the “Task-Complete Indicator” to signal the com-
mand and its associated function in controller is complete.
The indicator consists of one (1) byte containing a value of 13
decimal (0D hexadecimal), and which represents an ASCII CR
(Carriage Return).

2. Intercommand Delay: A short delay (usually around 2 ms) is
recommended between commands (after sending a command
sequence and before sending the next command).

3. Clearing the I/O Send & Receive Buffers: Clearing (purging)
the transmit and receive buffers of the I/O port immediately
before sending any command is recommended. Note that this
clearing of the buffers affects only the computer-side I/O; it
does not (necessarily) clear the buffers on the controller side,
requiring, when necessary, to reset/power-cycle the control-
ler. Following the rules described will generally avoid prob-
lems with getting garbage data in the I/O buffers of both the
computer and controller (i.e., using exact number of bytes for
both command sequences and return data (as per the Com-

7

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

mands table), never sending a command before the previous
command is finished with its task, etc.).

4. Positions in Microsteps: All positions sent to and received
from the controller are in microsteps (µsteps). See Mi-
crons/microsteps conversion table) for conversion between
µsteps and microns (micrometers (µm)).

Declaring position variables in C/C++:
/* current position for X, Y, & Z */
unsigned long cp_x_us, cp_y_us, cp_z_us; /* mi-
crosteps */
double cp_x_um, cp_y_um, cp_z_um; /* mi-
crons */
/* specified (move-to) position for X, Y, & Z */
unsigned long sp_x_us, sp_y_us, sp_z_us; /* mi-
crosteps */
double sp_x_um, sp_y_um, sp_z_um; /* mi-
crons */
Use the same convention for other position variables the applica-
tion might need.
Declaring the microsteps/microns conversion factors in C/C++:
/* conversion factors for MP-225/M, MP-285/M, or
MP-265/M based config. */
double us2umCF = 0.0625; /* microsteps to microns
*/
double um2usCF = 16; /* microns to microsteps
*/
/* conversion factors for MP-245[S]/M, MP-
845[S]/M, or MP-865/M based config. */
double us2umCF = 0.046875; /* microsteps to
microns */
double um2usCF = 21.333333333; /* microns to mi-
crosteps */
/* conversion factors for MT-800 config. */
double us2umCF = 0.078125; /* microsteps to mi-
crons */
double um2usCF = 12.8; /* microns to microsteps
*/
Converting between microsteps and microns in C/C++:
/* converting X axis current position */
cp_x_um = cp_x_us * us2umCF; /* microsteps to mi-
crons */
cp_x_us = cp_x_um * um2usCF; /* microns to mi-
crosteps */
Do the same for Y and Z, and for any other position sets used in
the application.

5. Ranges and Bounds: See Ranges and Bounds table for exact
minimum and maximum values for each axis of each compat-
ible device that can be connected. All move commands must
include positive values only for positions – negative positions
must never be specified. All positions are absolute as meas-
ured from the physical beginning of travel of a device’s axis.
In application programming, it is important that positional
values be checked (>= 0 and <= max.) to ensure that a neg-
ative absolute position is never sent to the controller and that
end of travel is not exceeded. All computational relative posi-
tioning must always resolve to accurate absolute positions.

Declaring minimum and maximum absolute position variables in
C/C++:
/* minimum and maximum positions for X, Y, & Z */
double min_x_um, min_y_um, min_z_um; /* minimum
microns */
double max_x_um, max_y_um, max_z_um; /* maximum
microns */
Set minimum and maximum absolute positions for each axis – see
Ranges & Bounds table.
/* initialize all minimum positions in microns*/
min_x_um = 0;
min_y_um = 0;
min_z_um = 0;
/* initialize all maximum positions in microns*/
/* MP-225/M, MP-285/M, MP-845[S]/M, MP-245[S]/M,
etc. */
max_x_um = 25000;
max_y_um = 25000;
max_z_um = 25000;

/* MP-865/M */
max_x_um = 50000;
max_y_um = 12500;
max_z_um = 25000;
/* MP-265/M */
max_x_um = 25000;
max_y_um = 12500;
max_z_um = 25000;

6. Absolute Positioning System Origin: The Origin is set to a
physical position of travel to define absolute position 0. The
physical Origin position is fixed at beginning of travel (BOT).
This means that all higher positions (towards end of travel
(EOT)) are positive values; there are no lower positions and
therefore no negative values are allowed.

7. Absolute vs. Relative Positioning: Current position (‘c’) and
move commands always use absolute positions. All positions
can be considered “relative” to the Origin (Position 0), but all
are in fact absolute positions. Any position that is considered
to be “relative” to the current position, whatever that might
be, can be handled synthetically by external programming.
However, care should be taken to ensure that all relative po-
sition calculations always result in correct positive absolute
positions before initiating a move command.

Declaring relative position variables in C/C++:
/* relative positions for X, Y, & Z */
double rp_x_um, rp_y_um, rp_z_um; /* microns */
/* initialize all relative positions to 0 after
declaring them */
rp_x_um = rp_y_um = rp_z_um = 0;

Enter any positive or negative value for each relative position
(e.g., rp_x_um = 1000; rp_y_um = 500; rp_z_um = -200 … etc.

For each axis, check to make sure that the new resultant absolute
position (to which to move) is within bounds. Reset the relative
position to 0 if not. If relative value is negative, its positivized val-
ue must not be greater than the current position. Otherwise, if
positive, adding current position with relative position must not
exceed the maximum position allowed. If out of bounds, resetting
relative position to 0 allow the remaining conversions and move-
ment to resolve without error.
/* check to make sure that relative X is within
bounds */
if ((rp_x_um < 0 && abs(rp_x_um) > cp_x_um) ||
 (cp_x_um + rp_x_um > max_x_um)) /* out of
bounds? */
 rp_x_um = 0; /* yes, so reset relative pos.
to 0 */
Repeat the above bounds check for each of the remaining axes.

For each axis, calculate new absolute position in microns and then
convert to microsteps before issuing a move command.
/* convert X relative position to absolute posi-
tion */
sp_x_um = cp_x_um + rp_x_um; /* add relative pos.
to current pos. */
/* convert new absolute X position in microns to
microsteps */
sp_x_us = sp_x_um * um2usCF;
Repeat for each of the remaining axes as required before issuing a
move command.

8. Position Value Typing: All positions sent and received to and
from the controller are in microsteps and consist of 32-bit in-
teger values (four contiguous bytes). Position values in mi-
crosteps are always positive, so data type must be an “un-
signed” integer that can hold 32 bits of data. Although each
positional value is transmitted to, or received from, the con-
troller as a sequence of four (4) contiguous bytes, for comput-
er application computational and storage purposes each
should be typed as an unsigned 32-bit integer (“unsigned
long” in C/C++; “uint32” in MATLAB, “U32” in LabVIEW,
etc.).

8

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

Position values in microns (micrometers or µm) should be da-
ta typed as double-precision floating point variables (“dou-
ble” in C/C++ and MATLAB, “DBL” in LabVIEW, etc.).

Note that in Python, incorporating the optional NumPy
package brings robust data typing like that used in C/C++ to
your program, simplifying coding and adding positioning ac-
curacy to the application.

9. Position Value Bit Ordering: All 32-bit position values trans-
mitted to, and received from, the controller must be bit/byte-
ordered in “Little Endian” format. This means that the least
significant bit/byte is last (last to send and last to receive).
Byte-order reversal may be required on some platforms. Mi-
crosoft Windows, Intel-based Apple Macintosh systems run-
ning Mac OS X, and most Intel/AMD processor-based Linux
distributions handle byte storage in Little-Endian byte order
so byte reordering is not necessary before converting to/from
32-bit “long” values. LabVIEW always handles “byte strings”
in “Big Endian” byte order irrespective of operating system
and CPU, requiring that the four bytes containing a mi-
crosteps value be reverse ordered before/after conversion
to/from a multibyte type value (I32, U32, etc.). MATLAB au-
tomatically adjusts the endianess of multibyte storage entities
to that of the system on which it is running, so explicit byte
reordering is generally unnecessary unless the underlying
platform is Big Endian. If your development platform does
not have built-in Little/Big Endian conversion functions, bit
reordering can be accomplished by first swapping positions of
the two bytes in each 16-bit half of the 32-bit value, and then
swap positions of the two halves. This method efficiently and
quickly changes the bit ordering of any multibyte value be-
tween the two Endian formats (if Big Endian, it becomes Lit-
tle Endian, and if Little Endian, it becomes then Big Endian).

10. Travel Lengths and Durations: “Move” commands might
have short to long distances of travel. If not polling for return
data, an appropriate delay should be inserted between the
sending of the command sequence and reception of return da-
ta so that the next command is sent only after the move is
complete. This delay can be auto calculated by determining
the distance of travel (difference between current and target
positions) and rate of travel. This delay is not needed if poll-
ing for return data. In either case, however, an appropriate
timeout must be set for the reception of data so that the I/O
does not time out before the move is made and/or the delay
expires.

11. Orthogonal Move Speed: Full speed for the “Orthogonal
Move” (‘M’) command is 5000 microns/sec. (5 mm/sec. or mi-
crons/millisecond) for single-axis movements (3000 µm/sec. (3
mm/sec. or µm/ms) for MP-225/M).

12. Straight-Line Move Speeds: Actual speed for the “Straight-
Line Move” (‘S’) command can be determined with the fol-
lowing formula: (1300 / 16) * (sp +1), where 1300 is the max-
imum speed in microns/second and “sp” is the speed level: 0
(slowest) through 15 (fastest). For mm/second or mi-
crons/millisecond, multiply result by 0.001.

Table 10. Straight-line move ‘S’ command speeds.

Speed
Setting

mm/sec
or

µm/ms

µm/sec
or

nm/ms

nm/sec in/sec
or

mil/ms

% of
Max.

15 1.30000 1300.00 1300000 0.051181102 100.00%
14 1.21875 1218.75 1218750 0.047982283 93.75%
13 1.13750 1137.50 1137500 0.044783465 87.50%
12 1.05625 1056.25 1056250 0.041584646 81.25%
11 0.97500 975.00 975000 0.038385827 75.00%
10 0.89375 893.75 893750 0.035187008 68.75%
9 0.81250 812.50 812500 0.031988189 62.50%
8 0.73125 731.25 731250 0.028789370 56.25%
7 0.65000 650.00 650000 0.025590551 50.00%
6 0.56875 568.75 568750 0.022391732 43.75%

Speed
Setting

mm/sec
or

µm/ms

µm/sec
or

nm/ms

nm/sec in/sec
or

mil/ms

% of
Max.

5 0.48750 487.50 487500 0.019192913 37.50%
4 0.40625 406.25 406250 0.015994094 31.25%
3 0.32500 325.00 325000 0.012795276 25.00%
2 0.24375 243.75 243750 0.009596457 18.75%
1 0.16250 162.50 162500 0.006397638 12.50%
0 0.08125 81.25 81250 0.003198819 6.25%

13. Multi Axis Movement Speed Increase: Specified travel speeds

are for single-axis movements. When travel traverses a 45°
diagonal within a dual-axis square, speed is increased by 40%
(x 1.4), and by 70% (x 1.7) within a triple-axis cube.

14. Move Interruption: A command should be sent to the control-
ler only after the task of any previous command is complete
(i.e., the task-completion terminator (CR) is returned). One
exception is the “Interrupt Move” (^C) command, which can
be issued while a command-initiated move is still in progress.

15. Extracting the MPC-200 Firmware Version Number: The
firmware version number returned by the ‘K’ command is en-
coded in BCD (Binary Coded Decimal) in two bytes, with mi-
nor version byte first, followed by major version byte, each of
which contains two-digit pairs , the first of which is in the
upper nibble and the next in the lower nibble. For example, if
the complete version is 3.15, then the bytes at offsets 1 and 2
will show (in hexadecimal) as 0x15 0x03 (ret[1] and ret[2] as
shown in the following code snippets). The following code
shows how to extract and convert the 4 BCD digits into usa-
ble forms for later comparison without altering the original
command return data (written in C/C++ and is easily porta-
ble to Python, Java, C#, MATLAB script, etc.).
/* “ret” is the array of bytes containing
the ‘K’ command’s return data */
/* define variables */
unsigned char verbyte; /* temp work byte */
int minver, majver, majminver;
float version;

Minor version number as an integer (e.g., 15):
verbyte = ret[1]; /* get minor ver. digits */
/* get 1’s digit & then get & add 10’s digit */
minver = (verbyte & 0x0F) +
 ((verbyte >>4 & 0x0F) * 10);

Major version number as an integer (e.g., 3):
verbyte = ret[2]; /* get major ver. digits */
majver = (verbyte & 0x0F) +
 ((verbyte >>4 & 0x0F) * 10);

Complete (thousands) version as an integer (e.g., 315):
majminver = majver * 100 + minver;

Complete version as a floating-point number (e.g., 3.15):
version = majminver * .01;

16. ‘S’ Command’s Streaming Return Data for Current Position:
The Straight-Line Move (‘S’) command has two modes of
operation:
a. a CR is returned when the target position has been

reached (F’ (Off) command before the ‘S’ command
sequence), or

b. streaming positional data is returned while move-
ment is occurring, and then a CR once movement is
complete (‘O’ (On) command before the ‘S’ com-
mand sequence).

Positional data is streamed at every 1 micron of movement,
and the rate (data per second) depends on the ‘S’ command
speed level used. Each positional data block streamed con-
sists of 12 bytes:

1. The 1st three bytes each contains FF hexadecimal (255
decimal) as a data block signature,

2. the next 3 contains positional data for the X axis,

9

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

3. the penultimate is for Y, and

4. last for Z.

All positional data are in microsteps. Each 3-byte position
needs to be converted into 4-byte blocks by prepending a
byte containing 0, so that the resulting data (now 4 bytes)
can be treated programmatically as an unsigned 32-bit
“long” (C/C++) or “U32” (LabVIEW) data type. All posi-
tional data streamed is in Little-Endian bit/byte order (Win-
tel), so conversion to 32-bit longs will require bit-order re-
versal (byte swapping) for Big-Endian platforms (e.g., Lab-
VIEW). The appropriate microstep-to-microns conversion
factor is needed according to the device type being moved
(see Microns/microsteps conversion factors (multipliers) ta-
ble).

Little-Endian bit/byte order environment:
 Signature X Y Z

pos[x]
0 1 2 3 4 5 6 7 8 9 10 11

FF FF FF xx xx xx yy yy yy zz zz zz

cpxus
 0 1 2 3

 00 xx xx xx

cpyus
 0 1 2 3

 00 yy yy yy

cpzus
 0 1 2 3

 00 zz zz zz

Big-Endian bit/byte order environment (“pos” is in Little-
Endian format):

 Signature X Y Z

pos[x]
0 1 2 3 4 5 6 7 8 9 10 11

FF FF FF xx xx xx yy yy yy zz zz zz

cpxus
 0 1 2 3

 xx xx xx 00

cpyus
 0 1 2 3

 yy yy yy 00

cpzus
 0 1 2 3

 zz zz zz 00

The following C/C++ code snippets can be used to process
the streaming data.

Array for a streamed 12-byte block of data containing cur-
rent position

unsigned char pos[12];

32-bit variables for current position in microsteps, all initial-
ized to 0 to ensure MSB (Most Significant Byte) allows only
positive values

long cpxus, cpyus, cpzus;
cpxus = cpyus = cpzus = 0;

Copy 24-bit (3-byte) position for each axis to 32-bit (4-byte)
equivalents. Use the byte position offsets shown in the dia-
gram above. (“le” means Little Endian; “be” means Big En-
dian bit/byte order.)

If in Little-Endian environment (e.g., Windows, Intel-
MacOSX), copy all 3 U24 bytes for each axis to the respec-
tive U32 variables.

memcpy(&cpxus[1], &pos[3], 3); /* X */
memcpy(&cpyus[1], &pos[6], 3); /* Y */
memcpy(&cpzus[1], &pos[9], 3); /* Z */

If in Big-Endian environment (e.g., legacy MacOS, Lab-
VIEW), copy U24 to U32 byte at a time (1st to 3rd, 2nd to 2nd,
& 3rd to 1st). Note that “pos” is always in Little-Endian
bit/byte order.

memcpy(&cpxus[2], &pos[3], 1); /* X */
memcpy(&cpxus[1], &pos[4], 1);
memcpy(&cpxus[0], &pos[5], 1);
memcpy(&cpyus[2], &pos[6], 1); /* Y */
memcpy(&cpyus[1], &pos[7], 1);
memcpy(&cpyus[0], &pos[8], 1);
memcpy(&cpzus[2], &pos[9], 1); /* Z */
memcpy(&cpzus[1], &pos[10], 1);
memcpy(&cpzus[0], &pos[11], 1);

Ready to update UI with current position in microsteps us-
ing 32-bit integer values. Double-precision variables for cur-
rent position in microns; initialize each to 0.

double cpxum, cpyum, cpzum;
cpxum = cpyum = cpzum = 0;

Microsteps-to-microns conversion factor (see “Microns / mi-
crosteps conversion” table for appropriate factor)

double us2umCF = 0.0625;

Get microns from microsteps for each axis
cpxum = cpxus * us2umCF;
cpyum = cpyus * us2umCF;
cpzum = cpzus * us2umCF;

Ready to update UI with current position in microns using
double-precision values. Loop for next data block as desired
until streaming ends.

For LabVIEW, a 3-byte positional value for an axis can be
transferred into a byte array, and then into a U32 data type
via a byte-swap function to ensure 24-bit to 32-bit conver-
sion while making sure that no high-order value is misinter-
preted as a sign bit (there should never be a negative posi-
tional value in the MPC-200). LabVIEW data types (e.g.,
U16, U32, I32) are always in Big-Endian bit/byte order,
while MPC-200 multibyte values are always transcieved in
Little-Endian bit/byte order.

A single completion indicator byte (ASCII CR) is returned
when streaming ends and target position has been reached.

NOTES:

10

MPC -325 MICROMANIPULATOR SYSTEM SERIES QUICK REFERENCE – REV. 3.21K (20201123)

NOTES:

	Manual Operation
	Configuration
	External Control

