
1 

COPYRIGHT © 2020   SUTTER INSTRUMENT COMPANY. ALL RIGHTS RESERVED. 

 
MP-285 

Micromanipulator, Stage, Translator, or  
Microscope Objective Control System  

(MP-285, MP-x8 & MT-20xx Series, MOM, & SOM) 
(Includes MP-285 and MP-285A Model Controllers) 

External Control Quick Reference 
Rev. 2.80 (20201005) 

 
NOTE: Unless otherwise specified, all “MP-285” 
references refer equally to Model MP-285 and Model 
MP-285A controllers. 
Controlling the MP-285 or MP-285A externally via 
computer is accomplished by sending commands 
between the computer and the equivalent connector 
on the rear of the controller: SERIAL (RS-232, 9-pin 
DSUB (MP-285 or MP-285A) or USB (MP-285A on-
ly).  

The SERIAL (RS-232) Interface: RS-232-C, minimal 
3-wire (Ground, Transmit, & Receive), 9-pin D-Shell 
connector (labeled “SERIAL” on the rear panel of 
the controller. 

Table 1. Serial RS-232 (DB9 connector) port settings. 

Property Setting 

Data (“Baud”) Rate (bps (bits 
per second)) 

19200, 9600*, 4800, 2400, 
1200 

Data Bits 8 

Stop Bits 1*, 1.5, 2 

Parity None*, Even, Odd 

Flow Control None 

* Default 
NOTE: The data rate can be selected via the MP-285 controller’s 
display and keypad. The default data rate (9600 bps) is recom-
mended for most applications. The Parity can also be configured 
to be “ON”, although the OFF (“None”) setting is recommended 
and is the default. 

The MP-285A USB Interface: Controlling the MP-
285A externally via computer is accomplished by 
sending commands over the USB interface between 
the computer and the USB connector on the rear 
panel of the MP-285A controller/ROE. The USB de-
vice driver for Windows is downloadable from Sutter 
Instrument’s web site (www.sutter.com). The MP-
285A requires USB CDM (Combined Driver Model) 
Version 2.10.00 or higher. The CDM device driver 
for the MP-285A consists of two device drivers: 1) 
USB device driver, and 2) VCP (Virtual COM Port) 
device driver. Install the USB device driver first, 
followed by the VCP device driver. The VCP device 
driver provides a serial RS-232 I/O interface be-
tween a Windows application and the MP-285A. 
Although the VCP device driver is optional, its in-
stallation is recommended even if it is not going to 
be used. Once installed, the VCP can be enabled or 
disabled.  

The CDM device driver package provides two I/O 
methodologies over which communications with the 
controller over USB can be conducted: 1) USB Di-
rect (D2XX mode), or 2) Serial RS-232 asynchronous 
via the VCP device driver (VCP mode). The first 
method requires that the VCP device driver not be 
installed, or if installed, that it be disabled. The sec-
ond method requires that the VCP be installed and 
enabled. 

Virtual COM Port (VCP) Serial Port Settings: The 
following table lists the required RS-232 serial set-
tings for the COM port (COM3, COM5, etc.) gener-
ated by the installation and enabling of the VCP 
device driver. 

Table 2. MP-285A USB-VCP interface serial port settings. 

Property Setting 

Data (“Baud”) Rate (bps (bits 
per second)) 

9600 

Data Bits 8 

Stop Bits 1 

Parity None 

Flow Control 1 “Hardware” or RTS/CTS  

The settings shown in the above table can be set in 
the device driver’s properties (via the Device Man-
ager if in Windows) and/or programmatically in your 
application.  

Protocol and Handshaking: Most command se-
quences have a terminator: ASCII CR (Carriage Re-
turn; 13 decimal, 0D hexadecimal) (see the MP-285 
external-control commands table). All commands 
return an ASCII CR (Carriage Return; 13 decimal, 
0D hexadecimal) to indicate that the task associated 
with the command has completed. When the con-
troller completes the task associated with a com-
mand, it sends ASCII CR back to the host computer 
indicating that it is ready to receive a new com-
mand. If a command returns data, the last byte re-
turned is the task-completed indicator.  
Command Sequence Formatting: Each command 
sequence consists of at least one byte, the first of 
which is the “command byte”. Those commands 
that have parameters or arguments require a se-

 
1 While the Flow Control property for the RS-232 DB9 interface is always 
set to “None”, it must be set to “Hardware” or RTS/CTS signaling for the 
virtual serial port via the USB-VCP device driver. 

http://www.sutter.com/


 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

2 

quence of bytes that follow the command byte. No 
delimiters are used between command sequence ar-
guments, and command sequence terminators are 
used in most cases. Although most command bytes 
can be expressed as ASCII displayable/printable 
characters, the rest of a command sequence must 
generally be expressed as a sequence of unsigned 
byte values (0-255 decimal; 00 – FF hexadecimal, or 
00000000 – 11111111 binary). Each byte in a com-
mand sequence being transmitted to the controller 
must contain an unsigned binary value. Attempting 
to code command sequences as “strings” is not ad-
visable. Any command data being returned from the 
controller must also be received and initially treated 
as a sequence of unsigned byte values. Groups of 
contiguous bytes can later be combined to form 
larger values, as appropriate (e.g., 2 bytes into 16-bit 
“word”, or 4 bytes into a 32-bit “long” or “double 
word”). For the MP-285 controller, all axis position 
values (number of microsteps) are stored as “long” 
(or “signed long”) 32-bit positive or negative values, 
and each is transmitted and received to and from 
the controller as four contiguous bytes. 

Axis Position Command Parameters: All axis posi-
tional information is exchanged between the con-
troller and the host computer in terms of mi-
crosteps. Conversion between microsteps and mi-
crons (micrometers) is the responsibility of the 
software running on the host computer (see Mi-
crons/microsteps conversion table for conversion 
factors).  
Microsteps are stored as positive or negative 32-bit 
values (“long” (or optionally, “signed long”) for 
C/C++; “I32” for LabVIEW).  

The 32-bit value consists of four contiguous bytes, 
with a byte/bit-ordering format of Little Endian 
(“Intel”) (most significant byte (MSB) in the first 
byte and least significant (LSB) in the last byte). If 
the platform on which your application is running is 
Little Endian, then no byte order reversal of axis 
position values is necessary. Examples of platforms 
using Little Endian formatting include any system 
using an Intel/AMD processor (including Microsoft 
Windows and Apple Mac OS X).  
If the platform on which your application is running 
is Big Endian (e.g., Motorola PowerPC CPU), then 
these 32-bit position values must have their bytes 
reverse-ordered after receiving from, or before send-
ing to, the controller. Examples of Big-Endian plat-
forms include many non-Intel-based systems, Lab-
VIEW (regardless of operating system & CPU), and 
Java (programming language/environment). 
MATLAB and Python (script programming lan-
guage) are examples of environments that adapt to 
the system on which each is running, so Little-
Endian enforcement may be needed if running on a 
Big-Endian system. Some processors (e.g., ARM) can 
be configured for specific endianess. 

Microsteps and Microns (Micrometers): All coordi-
nates sent to and received from the controller are in 
microsteps (µsteps). To convert between microsteps 
and microns (micrometers (µm)), use the following 
conversion factors (multipliers): 

Table 3. Microns/microsteps conversion. 

Device From/To Units Conv. Factor 

MP-285/M*  
micromanipulator 

microsteps  microns 0.04 
microns  microsteps 25 

MT-800 (MT-20xx) series  
translators 

microsteps  microns 0.05 
microns  microsteps 20 

* Applies also to 3DMS/M & MP-x8-series stages, and MOM & 
SOM microscope objective movers 

For accuracy in your application, type these conver-
sion factors as “double” (avoid using the “float” type 
as it lacks precision with large values). When con-
verting to microsteps, type the result as a 32-bit 
“long”, “signed long”, or “I32” integer. When con-
verting to microns, type the result as “double” (64-
bit double-precision floating-point values). 

Ranges and Bounds:  
Table 4. Ranges and bounds. 

Device Axis Len. 
(mm) 

Origin Microns 
(Microme-
ters (µm)) 

Microsteps 
(µsteps) 

MP-285/M, 
3DMS, MP-78, 

MOM, SOM 

X, Y, & 
Z 

25 
mm 

COT* 
-12,500 

 –  
12,500 

-200,000 
– 

200,000 

BOT 
0 
 –  

25,000 

0 
 –  

400,000 

MT-800 

X & Y 
22 

mm 

COT* 
-11,000  

 –  
11,000 

-140,800 
– 

140,800 

BOT 
0 
 –  

 22,000 

0 
 –  

281,600 

Z 25 
mm 

COT* 
-12,500  

 –  
12,500 

-200,000 
– 

200,000 

BOT 
0  
 –  

25,000 

0 
 –  

400,000 

* Factory default. 
NOTE: Origin is a physical position of travel that defines the 
center of the absolute position coordinate system (i.e., absolute 
position 0).  
Physical Positions: BOT (Beginning Of Travel), COT (Center Of 
Travel), & EOT (End Of Travel). 
In the MP-285, the Origin can be set to any physical position 
(factory default is COT). 
NOTE: The MP-x8-series stage and MT-800 (MT-20xx series) 
translator do not have a Z-axis motor. In either case, the control-
ler’s Z axis can be optionally connected to a motor of a different 
device (e.g., focus drive). 

Travel Speed: The following table shows the se-
lectable travel speeds for single-, double-, and triple-
axis movements for supported devices using orthog-
onal move commands. 



 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

3 

Table 5. Travel speeds. 

Resolution 
Speed Range  
(microns/sec) 

Low (coarse: 0.2 µm/µstep (10 µsteps/step))  0 – 3000* 

High (fine: 0.04 µm/µstep (50 µsteps/step))  0 – 1310 

* CAUTION: Although the absolute maximum microns/sec. speed 
allowable in low (coarse) resolution is 6,550, it is essential that a 

speed no higher than 3,000 be used with the MP-285A model 
controller. 

Command Reference: The following table lists all 
the external-control commands for the MP-285. 

 

Table 6. MP-285[A] controller external-control commands. 

Command Tx/-
Delay/-

Rx 

Ver. Total 
Bytes 

Byte 
Offset 
(len.) 

Value Alt-
key-
pad 

Ctrl-
char 

ASCII 
def./-
char. 

Description 

Dec. Hex. Binary 

Get Current 
Position 
(‘c’) 

Tx All 2 0 99 63 0110 0011 0099  ‘c’ Returns the current positions of X, 
Y, & Z axes in µsteps. 

   1 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx  13  Three 4-byte (32-bit) values (current positions in µsteps of X, Y, & Z), + 1 byte for 
completion indicator. 

    0 (4)       Current X–axis position in µsteps 
(32-bit signed integer) 

    4 (4)       Current Y–axis position in µsteps 
(32-bit signed integer) 

    8 (4)       Current Z–axis position in µsteps 
(32-bit signed integer) 

    12 13 0D 0000 1101   <CR> Task-completion indicator 

Move to Spec-
ified Position 
(‘m’) 

Tx All 14 0 109 6D 0110 1100 0109  ‘m’ Moves to specified position (µsteps) 
(see Ranges table) 

   1 (4)       Target position for X in µsteps (32-
bit signed integer) 

   5 (4)       Target position for Y in µsteps (32-
bit signed integer) 

    9 (4)       Target position for Z in µsteps (32-
bit signed integer) 

    13 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx   1 13 0D 0000 1101 0013  <CR> Task-completion indicator 

Set Velocity 
& Resolution 
(‘V’) 

Tx All 4 0 86 56 0101 0110 0086  ‘V’ Command (Note: Uppercase ‘V’) 
(see Resolution & Velocity note) 

   1 (2) 0 
 
 – 
4095 
 
or 
 

32, 
768 
- 
35, 
768 

0000 
- 
 

051E 
 
or 
 

8000 
 
- 

8BB8 

00000000 
00000000 

-  
00000101 
00011110 

or 
 

10000000 
00000000 

- 
10001011 
10111000 

One unsigned short (16-bit) integer (2 bytes) containing 
both resolution and velocity values. 
MSB (Bit 15) contains resolution setting; remaining bits 
(14 –0) contains velocity value. 
Resolution (Bit 15):  
  0 = Low (coarse: 0.2 µm/µstep (10 µsteps/step)) 
  1 = High (fine: 0.04 µm/µstep (50 µsteps/step)) 
Velocity (Bits 14-0): 
  Low Res.:   0 – 6550 (MP-285) or 3000 (MP-285A) µm/sec 
  High Res.:  0 – 1310 µm/sec 

    3 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx   1 13 0D 0000 1101 0013  <CR> Task-completion indicator 

Set Origin 
(‘o’) 

Tx All 2 0 111 6F 0110 1111 0111  ‘o’ Sets the Absolute Origin to the 
current position. 

    1 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx   1 13 0D 0000 1101 0013  <CR> Task-completion indicator 



 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

4 

Command Tx/-
Delay/-

Rx 

Ver. Total 
Bytes 

Byte 
Offset 
(len.) 

Value Alt-
key-
pad 

Ctrl-
char 

ASCII 
def./-
char. 

Description 

Dec. Hex. Binary 

Set Absolute 
Mode (‘a’) 

Tx All 2 0 97 61 0110 0001 0097  ‘a’ Sets movement mode to Absolute. 
Each ‘m’-command axis value rep-
resents an absolute position. (Note: 
No controller display update.) 

    1 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx   1 13 0D 0000 1101 0013  <CR> Task-completion indicator 

Set Relative 
Mode (‘b’) 

Tx All 2 0 98 62 0110 0010 0098  ‘b’ Sets movement mode to Relative. 
Each ‘m’-command axis value rep-
resents a position relative to the 
current position. (Note: No control-
ler display update.) 

    1 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx   1 13 0D 0000 1101 0013  <CR> Task-completion indicator 

Interrupt 
Move (^C) 

Tx All 1 0 3 03 0000 0011 0003 ^C <ETX> Interrupts an ‘m’-command initiat-
ed move in progress 

 Rx  1 0 61 3D 0011 1011 0061  ‘=’ Move in progress indicator 

   2 0 13 0D 0000 1101 0013  <CR> Task-completion indicator 

 Rx   0 13 0D 0000 1101 0013  <CR> Task-completion indicator (move-
ment was not in progress) 

Refresh VFD 
Display (‘n’) 

Tx All 2 0 110 6E 0110 0110 0101  ‘n’ Refreshes the controller’s display 
(X, Y, & Z coordinates only) 

    1 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx  1 0 13 0D 0000 1101 0013 ^M <CR> Task-completion indicator 

Reset  
Controller 
(‘r’) 

Tx All 2 0 114 72 0111 0010 0114  ‘r’ Resets the controller. 

   1 13 0D 0000 1101 0013 ^M <CR> Terminator 

Rx  1 0 13 0D 0000 1101 0013  <CR> Task-completion indicator 

Get Status 
(‘s’) 

Tx All 2 0 115 73 0111 0011 0115  ‘s’ Returns status information 

   1 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx  33 0 
(32) 

      Status data – see Status Data 
Structure table. 

    32 13 0D 0000 1101 0013  <CR> Task-completion indicator 

 
NOTES:  

1. Task-Complete Indicator: All commands will send back to 
the computer the “Task-Complete Indicator” to signal the 
command and its associated function in controller is com-
plete. The indicator consists of one (1) byte containing a 
value of 13 decimal (0D hexadecimal), and which repre-
sents an ASCII CR (Carriage Return). 

2. Intercommand Delay: A short delay (usually around 2 ms) 
is recommended between commands (after sending a 
command sequence and before sending the next com-
mand). 

3. Clearing the I/O Send & Receive Buffers: Clearing (purg-
ing) the transmit and receive buffers of the I/O port imme-
diately before sending any command is recommended. 
Note that this clearing of the buffers affects only the com-
puter-side I/O; it does not (necessarily) clear the buffers on 
the controller side, requiring, when necessary, to re-
set/power-cycle the controller. Following the rules de-
scribed will generally avoid problems with getting garbage 
data in the I/O buffers of both the computer and controller 
(i.e., using exact number of bytes for both command se-
quences and return data (as per the Commands table), 
never sending a command before the previous command is 
finished with its task, etc.). 

4. Positions in Microsteps and Microns: All positions sent to 
and received from the controller are in microsteps (µsteps). 
See Microns/microsteps conversion table) for conversion 
between µsteps and microns (micrometers (µm)).  

Declaring position variables in C/C++:  
/* current position for X, Y, & Z */ 
long   cp_x_us, cp_y_us, cp_z_us;  /* microsteps */ 
double cp_x_um, cp_y_um, cp_z_um;  /* microns */ 
/* specified (move-to) position for X, Y, & Z */ 
long   sp_x_us, sp_y_us, sp_z_us;  /* microsteps */ 
double sp_x_um, sp_y_um, sp_z_um;  /* microns */ 

Use the same convention for other position variables the appli-
cation might need. 

Declaring the microsteps/microns conversion factors  in 
C/C++: 
/* conversion factors for MP-285/M based config. */ 
double us2umCF = 0.04; /* microsteps to microns */ 
double um2usCF = 25;   /* microns to microsteps */ 
/* conversion factors for MT-800 config. */ 
double us2umCF = 0.05; /* microsteps to microns */ 
double um2usCF = 20;   /* microns to microsteps */ 

NOTE: In an MP-285A-based system configured for an MP-78 
stage or MT-800-based XY translator (MT-2078), the Z axis 
may be configured for different conversion factors (e.g., if Z is 
wired to a separate device such as a focus drive). In such cases, 
make sure the appropriate microsteps/microns conversion fac-
tors are used for Z while using the standard factors for X and 
Y. 



 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

5 

Converting between microsteps and microns in C/C++: 
/* converting X axis current position */ 
cp_x_um = cp_x_us * us2umCF;  /* microsteps to microns */ 
cp_x_us = cp_x_um * um2usCF;  /* microns to microsteps */ 

Do the same for Y and Z, and for any other position sets used 
in the application. 

5. Ranges and Bounds: See Ranges and Bounds table for 
exact minimum and maximum values for each axis of each 
compatible device that can be connected. All move com-
mands include positive or negative values for positions. All 
positions are absolute as measured from the Origin posi-
tion as set in the controller for all axes of the attached de-
vice. The factory default Origin position is the physical 
center position (between beginning of travel and end of 
travel) of the device. In application programming, it is im-
portant that positional values be checked (>= minimum 
and <= maximum) to ensure that a position is within the 
bounds of travel before it is sent to the controller. 

6. Absolute Positioning System Origin: The Origin is set to a 
physical position of travel to define absolute position 0. 
The factory default physical Origin position is center of 
travel (COT). This means that all higher positions (to-
wards end of travel (EOT)) are positive values, and all low-
er positions (towards beginning of travel (BOT)) are nega-
tive values. The Origin can be changed (via the controller’s 
front panel display/keypad or via the Origin (‘o’) command 
sent from an external program.  

CAUTION: When changing the Origin from its factory de-
fault, it is not possible to obtain the new Origin’s physical 
position via an external control command. If changing the 
Origin’s physical position via the external control ‘o’ com-
mand, it is recommended that the external application 
keep careful track of all Origin changes, and automatically 
adjust its view of the absolute position coordinate system 
according to the current Origin’s physical position. 

7. Absolute vs. Relative Positioning: Current position (via the 
‘c’ command) report absolute positions of each axis. Mov-
ing to a new position (via the ‘m’ command) is specified 
with absolute position values when in Absolute mode (‘a’ 
command) or with relative values (relative to the current 
position) when in Relative mode (‘b’ command).  

CAUTION: In an external control program, care should be 
taken to ensure that the Absolute/Relative mode state be 
updated upon a mode change and kept track of, as it not 
possible to obtain the current mode from the controller. In 
addition, any computational relative positioning made in 
an external program while in Absolute mode must ensure 
that relative positions are accurately translated to correct 
absolute positions before initiating a move command. 

8. Position Value Typing: All positions sent and received to 
and from the controller are in microsteps and consist of 
32-bit integer values (four contiguous bytes). Position val-
ues can be either positive or negative, so the type must be 
“signed”. Although each positional value is transmitted to, 
or received from, the controller as a sequence of four (4) 
contiguous bytes, for computer application computational 
and storage purposes each should be typed as a signed in-
teger (“long” or “signed long” in C/C++; “I32” in Lab-
VIEW, etc.). Note that in Python, incorporating the op-
tional NumPy package brings robust data typing like that 
used in C/C++ to your program, simplifying coding and 
adding positioning accuracy to the application. 

9. Position Value Bit Ordering: All 32-bit position values 
transmitted to, and received from, the controller must be 
bit/byte-ordered in “Little Endian” format. This means 
that the least significant bit/byte is last (last to send and 
last to receive). Byte-order reversal may be required on 
some platforms. Microsoft Windows, Intel-based Apple 
Macintosh systems running Mac OS X, and most In-
tel/AMD processor-based Linux distributions handle byte 
storage in Little-Endian byte order so byte reordering is 
not necessary before converting to/from 32-bit “long” val-
ues. LabVIEW always handles “byte strings” in “Big En-
dian” byte order irrespective of operating system and CPU, 
requiring that the four bytes containing a microsteps value 
be reverse ordered before/after conversion to/from a multi-
byte type value (I32, U32, etc.). MATLAB automatically 
adjusts the endianess of multibyte storage entities to that 
of the system on which it is running, so explicit byte reor-
dering is generally unnecessary unless the underlying plat-
form is Big Endian. If your development platform does not 
have built-in Little/Big Endian conversion functions, bit 
reordering can be accomplished by first swapping positions 
of the two bytes in each 16-bit half of the 32-bit value, and 
then swap positions of the two halves. This method effi-
ciently and quickly changes the bit ordering of any multi-
byte value between the two Endian formats (if Big Endian, 
it becomes Little Endian, and if Little Endian, it becomes 
then Big Endian).  

10. Travel Lengths and Durations:  “Move” commands might 
have short to long distances of travel. If not polling for re-
turn data, an appropriate delay should be inserted between 
the sending of the command sequence and reception of re-
turn data so that the next command is sent only after the 
move is complete. This delay can be auto calculated by de-
termining the distance of travel (difference between cur-
rent and target positions) and rate of travel. This delay is 
not needed if polling for return data. In either case, how-
ever, an appropriate timeout must be set for the reception 
of data so that the I/O does not time out before the move is 
made and/or the delay expires. 

11. Z-Axis Usage in 2-Axis Systems: On an MT-800, MP-78, or 
MP-88 system, the Z axis can be used as a focus drive, with 
a conversion factor that may be custom according to the 
make and model of the microscope being used. 

12. Setting Resolution & Velocity: The Set Resolution & Veloc-
ity (‘V’) command unsigned 16-bit value can be easily 
composed mathematically using the following formula:   

unsigned short ResSpeed = (Res * 0x8000) + Speed  

where “ResSpeed” is the final unsigned 16-bit value (Little 
Endian bit order), “Res” is the resolution (0 for Low; 1 for 
High), 0x8000 (32,768 decimal) as a multiplier positions 
the resolution (0 or 1) to Bit 15 (the high order bit), and 
then the “Speed” value is simply added to occupy Bits 14 
through 0. The “unsigned short” is a C/C++ data type def-
inition that ensures that “ResSpeed” is a 16-bit variable 
that holds only positive values. 

13. Move Interruption: A command should be sent to the con-
troller only after the task of any previous command is 
complete (i.e., the task-completion terminator (CR) is re-
turned). One exception is the “Interrupt Move” (^C) 
command, which can be issued while a command-initiated 
move is still in progress. 



 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

6 

Table 7. Status data structure (as returned by Get Status (‘s’) command. 
Offset Length Name Description 

0 8 bits FLAGS Bit Name Description Values 

   0-3 SETUP # Currently loaded setup number 
coded in BCD (decimal digit 0-9) 

Binary-Coded Decimal (BCD) Dec. 
Digit      3 2 1 0 

     0 0 0 0 0 

      0 0 0 1 1 

      0 0 1 0 2 

      0 0 1 1 3 

      0 1 0 0 4 

      0 1 0 1 5 

      0 1 1 0 6 

      0 1 1 1 7 

      1 0 0 0 8 

      1 0 0 1 9 

      1 (Set) 0 (Clear) 

   4 ROE_DIR Last ROE direction Negative Positive 
   5 REL_ABS_F Display origin Absolute Relative 
   6 MODE_F Manual mode flag  Continuous Pulse 
   7 STORE_F Setup condition  Stored Erased 
1 Byte UDIRX 

User-defined values for motor axis directions. Valid values: 0-5 2 Byte UDIRY 
3 Byte UDIRZ 
4 Word ROE_VARI Microsteps per ROE click 
6 Word UOFFSET User-defined period start value 
8 Word URANGE User-defined period range 
10 Word PULSE Number of microsteps per pulse 
12 Word USPEED Adjusted pulse speed microsteps per sec. 
14 Byte INDEVICE Input device type 
15 8 bits FLAGS_2 Bit Name Description 1 (Set) 0 (Clear) 

   0 LOOP_MODE  Program loops  Do loops Execute once 
   1 LEARN_MODE Learn mode status Learning now Not learning 
   2 STEP_MODE Resolution (microsteps/step) 50 10 
   3 SW2_MODE Joystick side button Enabled Disabled 
   4 SW1_MODE Enable FSR/Joystick Enabled Cont/Pulse (keypad) 
   5 SW3_MODE ROE switch  Enabled Disabled 
   6 SW4_MODE Switches 4 & 5 Enabled Disabled 
   7 REVERSE_IT Program sequence Reverse Normal 

16 Word JUMPSPD “Jump to max at” speed 
18 Word HIGHSPD “Jumped to” speed 
20 Word DEAD Dead zone, not saved 
22 Word WATCH_DOG Programmer’s function (analog input for overload protection) 
24 Word STEP_DIV Microns  Microsteps conversion factor. See Note 2. 
26 Word STEP_MUL Microns  Microsteps conversion factor. See Note 2. 
28 Word XSPEED Velocity (microns/sec., Bits 14 - 0) & resolution (0 or 1, Bit 15). See Note 3. 
30 Word VERSION Firmware version. See Note 4. 
32 Byte  End of received data terminator (ASCII CR (13 decimal or 0D hexadecimal)) 

NOTES:  

1. All values are stored in Little-Endian bit order. All byte val-
ues are ordered Bit 7 through Bit 0. All “word” (16-bit) values 
are ordered Bit 15 through Bit 0. To reverse the bit order of 
word values to Big Endian, swap positions of both bytes (least 
significant byte becomes most significant and most significant 
becomes least significant). 

2. STEP_DIV and STEP_MUL: Both contain 16-bit values used 
as factors for converting positional values between microns 
and microsteps. See the Microns/microsteps conversion fac-

tors table for what the values need to be for conversions. Posi-
tion values in microns are typically stored in “double” (for 
double-precision floating-point) data type variables, while po-
sitions in microsteps are stored as 32-bit signed integer varia-
bles data-typed as “signed long”. “double” and “signed long” 
(or just “long”) are C/C++ data types. Both conversion fac-
tors as copied or derived from STEP_DIV and STEP_MUL 
should be stored in “double” data type variables so they can 
be used as multipliers to facilitate accurate conversions be-
tween double-precision microns and 32-bit integer microsteps.  



 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

7 

In the C/C++ examples below “status_data_block” is the ad-
dress of the data returned by the ‘s’ command, and “double” 
is the data type for double-precision floating-point variables. 
/* define both conversion factors as double-precision floating 
point variables */ 
double um2usCF, us2umCF; 
 

MP-285: STEP_DIV contains the microsteps/micron conver-
sion factor. STEP_MUL contains the microns/microstep con-
version factor (the reciprocal of STEP_DIV) * 100.  
/* Get microsteps/microns conversion factor */ 
us2umCF = (double)((unsigned short)status_data_block[24]); 
/* Get microns/microstep conversion factor */ 
um2usCF = (double)((unsigned short)status_data_block[26]) / 100; 
 

For example, if the controller is configured for an MP-285/M 
micromanipulator or derived device (3DMS-285 or MP-78 
stage, or MOM or SOM objective mover), then STEP_DIV 
contains 25 and STEP_MUL contains 4 (0.04 (the actual re-
ciprocal of STEP_DIV * 100).  

If the controller is configured for an MT-800 XY Translator, 
then STEP_DIV contains 20 and STEP_MUL contains 5 (0.05 
* 100). 

MP-285A: Both STEP_DIV and STEP_MUL contain the dis-
tance travelled by ten microsteps, expressed in nanometers 
(where 1 nanometer = 0.001 micron). To get the length of one 
microstep in nanometers, divide the field’s value by 10 and 
then again by 1000. To get the number of microsteps required 
to move one micron, take the reciprocal of the length of one 
microstep (in microns).  
/* microns/microstep conversion factor: Divide by 10 for  
nanometers, then by 1000 for microns */ 
um2usCF = (double)((unsigned short)status_data_block[26]) / 10000; 
/* microsteps/micron: Reciprocal of microns/microstep */ 
us2umCF = 1 / um2usCF; 
 

For example, if the controller is configured for an MP-285/M 
micromanipulator or derived device (3DMS-285 or MP-78 
stage, or MOM or SOM objective mover), then both fields con-

tain 400, meaning 10 microsteps = 400 nanometers. The 
length of one microstep is therefore 400/10 = 40 nanometers, 
or 400/10000 = 0.04 microns. The number of microsteps 
needed to move one micron is 1/0.04 = 25 microsteps. Thus, 
the conversion factors for the MP-285/M are 0.04 mi-
crons/microstep and 25 microsteps/micron. 

3. XSPEED: Contains an unsigned 16-bit value (“unsigned 
short” or “WORD”) with both the Resolution (Low or High) 
and the speed (microns/sec) encoded within it. The Resolution 
is stored in the high-order bit (Bit 15), and the speed is stored 
in the remaining bits (Bits 14 through 0). Extracting both 
values can be done in the following way (C/C++): 
/* “status_data_block” is the name of the address of the data  
returned by the ‘s’ command. “unsigned” is a data type prefix that 
indicates positive numbers only */ 
unsigned short XSPEED, Speed, B15; /* 16-bit variables */ 
unsigned char Res;                 /* 8-bit variable */ 
/* read 16 bits from “status_data_block” at Index (offset) 28 */ 
XSPEED = (unsigned short)status_data_block[28]; 
Res    = 0;      /* assume Low Res */ 
Speed  = XSPEED; /* assume Low Res speed */ 
B15    = 0x8000; /* Bit 15 position value (32758 dec.) */ 
if (XSPEED >= B15)  /* if High Res . . . */ 
{ 
    Res   = 1;             /* set Res to High */ 
    Speed = (XSPEED – B15) /* extract High Res speed */ 
} 
 

VERSION: Contains the version of the controller’s firmware * 
100. To extract the version, divide by 100 (e.g., 302 / 100 = 
3.02 (3 is the major version number and 02 is the minor ver-
sion)). 
/* Get the version as a 16-bit positive integer value */ 
unsigned short VERSION =  
            (unsigned short)status_data_block[30]; 
/* major version integer */ 
unsigned short ver_major = VERSION / 100;   
/* minor version integer */ 
unsigned short ver_minor = VERSION % 100;   
/* full version floating-point value */ 
float Ver = ((float)VERSION) / 100;   

 

 
 

Table 8. Error codes. 

ASCII 
Char. 

Value Error Description 
Dec. Hex. Binary 

0 48 30 00110000 SP Overrun The previous character was not unloaded before the latest was received 
1 49 31 00110001 Frame Error A valid stop bit was not received during the appropriate time period 
2 50 32 00110010 Buffer Overrun The input buffer is filled, and CR has not been received 
4 51 34 00110011 Bad Command Input cannot be interpreted – command byte not valid 
8 56 38 00111000 Move  

Interrupted 
A requested move was interrupted by input on the serial port.  This 
code is ORed with any other error code.  The value normally returned is 
“<”, i.e., ‘8’ (38h) ORed with ‘4’ (34h) = ‘<’ (3Ch). ‘4’ is reported on 
the vacuum fluorescent display. 
‘8’ | ‘0’ = ‘8’  (38h | 30h = 38h) 
‘8’ | ‘1’ = ‘9’  (38h | 31h = 39h) 
‘8’ | ‘2’ = ‘:’  (38h | 32h = 3Ah) 
‘8’ | ‘3’ = ‘;’  (38h | 33h = 3Bh) 
‘8’ | ‘4’ = ‘<’  (38h | 34h = 3Ch) 

 



 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

8 

Table 9. MP-285[A] Programmed robotic move external commands. 

Name Tx/-
Delay
/-Rx 

Ver
. 

Total 
Bytes 

Byte 
Offset 
(len.) 

Value Alt-
key-
pad 

Ctrl-
char 

ASCII 
def./-
char. 

Details 

Dec. Hex. Binary 

Download 
Program (‘d’) 
(to the 
controller) 

Tx All 3+ 
(n*12) 
+1 

0 100 64 0110 0100 0100  ‘d’ Downloads a sequence of vectors to 
the controller to be stored in a 
specified program number. 

   1 1 
- 
10 

01 
- 
0A 

0000 0001 
- 

0110 1010 

0001 
- 

0010 

  Program number (1-byte unsigned 
integer): 1 – 10. 

    2 1 
- 
99 
(n) 

01 
- 
63 

0000 0001 
- 

0110 0011 

0001 
- 

0099 

  Number of vectors (n) in the 
program (1-byte unsigned integer): 
1 – 99. 

    o=2 A vector consists of a 32-bit signed “long” integer value (Little-Endian) in 4 bytes for 
the vector type descriptor and for each axis (X, Y, & Z), for a total of 16 bytes. 
o=current offset; v=1. If n > 0, enter loop and send next 16 bytes for Vector v. 

    o+1 
(4) 

3,490,
119, 
680 

D007 
0000 

1010 0000 
0000 0111 
0000 0000 
0000 0000 

   Vector type: Vector 

 0 0000 
0000 

0000 0000 
0000 0000 
0000 0000 
0000 0000 

   Vector type: Pause 

    o+5 
(4) 

      Vector v X–axis distance in µsteps  

    o+9 
(4) 

      Vector v Y–axis distance in µsteps  

    o+13 
(4) 

      Vector v Z–axis distance in µsteps  

    o+17 o=offset of last byte in vector. If n > 0, decrement n, increment v, and loop for next 
vector. Else, exit loop 

    o+1 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx  1 1 13 0D 0000 1101 0013 ^M <CR> Task-completion indicator 

Execute 
Stored 
Program (‘k’) 

Tx All 3 0 107 6B 0110 1011 0107  ‘k’ Executes (runs) a specified program 
stored in the controller. 

   1 1-10 01-0A 0000 0001 
- 

0110 1010 

0001 
- 

0010 

  Program number (1-byte unsigned 
integer): 1 – 10. 

    2 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx  1 1 13 0D 0000 1101 0013 ^M <CR> Task-completion indicator 



 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

9 

Name Tx/-
Delay
/-Rx 

Ver
. 

Total 
Bytes 

Byte 
Offset 
(len.) 

Value Alt-
key-
pad 

Ctrl-
char 

ASCII 
def./-
char. 

Details 

Dec. Hex. Binary 

Upload 
Program (‘u’) 
(to the 
computer) 

Tx All 3 0 100 64 0110 0100 0100  ‘u’ Uploads to the computer a sequence 
of vectors stored in controller’s 
specified program number. 

   1 1-10 01-0A 0000 0001 
- 

0110 1010 

0001 
- 

0010 

  Program number (1-byte unsigned 
integer): 1 – 10. 

    2 13 0D 0000 1101 0013 ^M <CR> Terminator 

 Rx  1+ 
(n*12) 
+1 

0 1 
- 
99 
(n) 

01 
- 
63 

0000 0001 
- 

0110 0011 

0001 
- 

0099 

  Number of vectors in the program 
(1-byte unsigned integer), 
referenced in this table as “n”. 

    o=0 A vector consists of a 32-bit signed “long” integer value (Little-Endian) in 4 bytes for 
the vector type descriptor and for each axis (X, Y, & Z), for a total of 16 bytes. 
o=current offset; v=1. If n > 0, next 16 bytes are returned for Vector v, so enter loop. 

    o+1 
(4) 

3,490,
119, 
680 

D007 
0000 

1010 0000 
0000 0111 
0000 0000 
0000 0000 

   Vector type: Vector 

 0 0000 
0000 

0000 0000 
0000 0000 
0000 0000 
0000 0000 

   Vector type: Pause 

    o+5 
(4) 

      Vector v X–axis µsteps if vector or 0 
for pause 

    o+9 
(4) 

      Vector v Y–axis µsteps if vector or 0 
for pause 

    o+13 
(4) 

      Vector v Z–axis µsteps if vector or 0 
for pause 

    o+17 o=last byte in vector. If n > 0, decrement n, increment v, and loop for next vector. 
Else, exit loop 

    o+1 
 

13 0D 0000 1101 0013 ^M <CR> Task-completion indicator 

Continue 
After Pause 
(‘e’) 

Tx All 2 0 101 65 0110 0101 0101  ‘e’ Command 

   1 13 0D 0000 1101 0013 ^M <CR> Terminator 

Rx  1 0 13 0D 0000 1101 0013 ^M <CR> Task-completion indicator 

 
NOTES: 

1. “Download” means sending a program to the controller (com-
puter --> controller). “Upload” means receiving a program 
from the controller (controller --> computer). 

2. Each vector is 36 bytes (three sets of 12 bytes, each consisting 
of three contiguous 32-bit signed values (4 bytes each) for X, 
Y, and Z, in that order). 

3. The following commands/functions can be inserted before any 
vector:  
Absolute Mode (‘a’) 
Relative Mode (‘b’) 
Set Velocity & Resolution (‘V’) 
Pause & duration 
 

 
NOTES: 

 



 

MP-285 MICROMANIPULATOR SYSTEM EXTERNAL CONTROL QUICK REFERENCE – REV. 2.80 (20201005) 

10 

 
NOTES: 

 
 


