 Driver for the Micromanipulator MP-285, ver 1.2

I. General description.

The driver consists of more than a dozen small LabView 6.0 programs (Virtual Instruments - VIs), and one demonstration program for manual control – Manual.vi. Each small program typically does one simple operation with the manipulator. The driver was developed based on a VISA interface, and may be used on PC & MAC Computers under different OS (UNIX, Windows).

All the VIs have the same interface and use the same data type – ‘Duty Cluster’ (cluster is a synonym of the structure in C/C++). Duty Cluster consists of two variables: ‘VISA Session’- special structure, which define all the VISA properties and ‘Error Cluster’- another well-known structure, which is used for keeping the error information. The detailed information about ‘VISA Session’ and ‘Error Cluster’ may be found in the LabView help.

All the VIs are working the same way: If an error comes to the input the program do nothing, but pass this error information to the output. (Exception: Error Handler – look his description) The MP-285 is a slow device. Because of this, all the drivers’ VIs use reading and writing with timeout. If the read/write operation cannot be completed during the timeout (in milliseconds) an appropriate mistake will be recorded to the ‘Error Cluster’ and will be sent from one VI to another, until it reaches the ‘Error Handler’.

The typical program should consist of 4 major parts:

	VISA MP-285 Init.vi
	
	The Initiation of the port & manipulator, settings up all the interface parameters, opening the VISA session.

	………………..…….
	
	Any combination of the driver’s commands.

	VISA MP-285 Error Hundler.vi
	
	Checking/Taking care of the errors.

	VISA MP-285 Close.vi
	
	Closing the VISA Interface.

The programs for programming the controller (commands ‘Download Program’, ‘Execute Stored Program’ and ‘Upload Program’) were NOT included to the driver, because I strongly believe, it’s much easily to do that directly from the computer than to program the manipulator.

II. Description of the Virtual instruments (VI)

Here you will found the list of all drivers’ VI with the brief descriptions.

1. VISA MP-285 Init.vi
Inputs: Serial port #(Com1 – 1; Com2 – 2…); Timeout in milliseconds; Error Cluster.

OUTPUTS: Duty Cluster. Duty Cluster = (VISA Session IN, Error Cluster)

The values by the definition (If the inputs NOT wired):

Port = Com1, Timeout = 200 ms, Error Cluster = NO Errors.

The parameters, defined inside the VI (In brackets – the value):

i. Interface settings: Baud Rate (9600); Data Bits(8); Stop Bits(1); Parity(None); Flow Control(None).

ii. VISA settings: Serial End Mode for Reads(None); Serial End Mode for Writes(None).

NOTES:

· These interface settings are ‘Default’ for the MP-285.

· You can easy change the ‘inside’ parameters from the VI’s Front Panel.

· My MP-285 can work with the Parity control, but it must be set up from the Front Panel as “Even”.

· VISA Settings: LabView’s VISA interface has a feature to interrupt Read/Write operation if the special symbol (usually ASCII EOT, 4hex) is readied/written. By default this option is ON. It must be turned off, otherwise data stream accidentally may interrupt the Reading/Writing. For the more information look at LabView help, page “VISA Properties”.

· For the UNIX and MAC the port identification may be slightly different.

· Look at the ‘Refresh Display.vi’ description for more information about MP-285’s display options.

· The slowest command in the driver is ‘Interrupt Move’. It may be unstable even with the 130 milliseconds time out. 200 milliseconds seems to be OK.

BLOCK DIAGRAM:

The formation of the VISA Session Name, Open VISA, Set up the Visa Properties, Refresh display, Exit.

2. VISA MP-285 Close.vi
Inputs: Duty Cluster – must be wired.

OUTPUTS: Error Cluster

NOTES:

· This VI should be the last driver’s VI in the program.

· Variable VISA Session IN is no longer available after this VI.

 BLOCK DIAGRAM:

 Just execute the Visa Close function from LabView library.

3. VISA MP-285 Error Hundler.vi
INPUTS: Duty Cluster – must be wired.
OUTPUTS: Duty Cluster

NOTES:

· There are two basic types of mistakes. One is timeout like mistakes, when the controller is not responding during the timeout. These mistakes (and similar ones) are recorded to the Error Cluster by VISA READ/VISA WRITE VIs. Another type of mistake is when the controller returns a wrong symbol, not a handshaking ‘CR’. It means the command was not executed in the proper way. The driver’s VIs usually check the returned symbol and, if it’s wrong, puts an appropriate error message to the Error Cluster. In any case the error’s information is kept in the Error Cluster.

Block Diagram:

First, check is any error in the Error Cluster. If no – do nothing but output the same Duty Cluster. If yes – Display the error, Reset (Clean) the Error Cluster; use this Error Cluster to run VIs ‘Reset’ and ’Close’, display the second message, stop the program. (Again, all the VI may be executed if NO errors are in the input Error Cluster, so this cluster must be cleaned before run any VI)

4. MP-285 Data Decode.VI
INPUTS: Data string – must be wired, Offset – I 32, Length – I 32

OUTPUTS: Decoded Data – I 32.

The values by the definition (If the inputs are NOT wired):

Offset = 0, Length = 1.

NOTES: None

BLOCK DIAGRAM:

It’s a very simple program; first – extract the data from the input string, started with the offset (# of bytes) than – decode it.

5. VISA MP-285 Get Position.VI
INPUTS: Duty Cluster – must be wired.
OUTPUTS: PositionX, PositionY, PositionZ (all – in microns, representation: double), Duty Cluster.

NOTES:

· Serial read is a control internal hex output; it is available only on the Panel Window.

BLOCK DIAGRAM:

Write ‘c’ and ‘CR’ to the controller, read 13 bytes of data. (12 bytes – data, 1 byte – CR, handshaking symbol) Decode all the data. Test: if the 13-th symbol is not CR – write an error to the Error Cluster. Exit.

6. VISA MP-285 Go To Position.VI
INPUTS: Duty Cluster – must be wired, PositionX, PositionY, PositionZ (all – in microns, representation: double)

OUTPUTS: Duty Cluster.

The values by the definition (If the inputs NOT wired):

PositionX = 0, PositionY= 0, PositionZ= 0.

NOTES:

· IMPORTANT !!! Each MP-285 movement should starts from “Go To Position.VI” and should finish with “VISA MP-285 Is position Reached.VI” OR “VISA MP-285 Interrupt Move.VI”. NO OTHER DRIVER’s VI CAN BE PLACED BETVEEN “GO TO POSITION” AND ”IS POSITION REACHED” OR “INTERRUPT MOVE.VI”. Each time the manipulator successfully finished the movement, it sends the ‘CR’ symbol to the computer. Driver’s VI needs to read it before sending any other command. “VISA MP-285 Is position Reached.VI” or “VISA MP-285 Interrupt Move.VI” takes care of it.

· The ends of diapasons: As soon, as the manipulator reaches any end of it’s working diapason (X, Y or Z) it will stop moving and report normal handshaking ‘CR’.

BLOCK DIAGRAM:

Take the data, convert it first - to MP’s units (by *25), than - to the string, and finally - add the command symbols ‘m’ and ’CR’. Than – record this string to the MP-285.

7. VISA MP-285 Is Position Reached.VI
INPUTS: Duty Cluster – must be wired
OUTPUTS: Duty Cluster, Boolean flag: if position was reached – TRUE, otherwise – FALSE.

NOTES:

· This is ‘safe’ VI, because it is not waiting for the response from the manipulator, but only checking information in the manipulator’s port – see the Note to the ‘Reach Position.VI’

BLOCK DIAGRAM:

First, check the errors in the Error Cluster. If there is an error – do nothing, but pass this error forward. Than check the number of bytes, available in the port. If nothing is available – return FALSE (position not reached), otherwise if CR – report TRUE and do the display refresh; if NOT CR – report Error and STILL REPORT TRUE.

8. VISA MP-285 Reach Position.VI
INPUTS: Duty Cluster – must be wired
OUTPUTS: Duty Cluster

NOTES:

· IMPORTANT !!! This VI is waiting the response from the manipulator. Because of that it may be placed ONLY after ‘Go To Position.VI’. The result of running this program after any other VI will be suspension of the computer, because no symbols for reading will be available from the manipulator.

BLOCK DIAGRAM:

First, check the errors in the Error Cluster. If there is an error – do nothing, but pass this error forward. If no errors – wait until any symbol becomes available in the manipulator’s port. Read all available symbols. Check the first symbol: Is it ‘CR’? Yes – good: exit without the errors; No – report an error to the Error Cluster.

9. VISA MP-285 Interrupt Move.VI
INPUTS: Duty Cluster – must be wired
OUTPUTS: Duty Cluster, Boolean flag: TRUE – the movement was interrupted, FALSE – the movement was not interrupted.

NOTES:

· There is wrong information in the manual about the manipulator’s response on this command: The MP-285 is sending back two bytes. There are ‘=4’ (hex 3D 34) if the movement was interrupted, and ‘44’ (hex 34 34) if not. My manipulator is not sending any ‘CR’ symbol as a response to this command.

BLOCK DIAGRAM:

Write to the manipulator ‘CTRL-C’ (hex 3). Read two symbols. Analyze them: If first one is ‘=’ (hex 3D) setup Boolean output flag to TRUE, otherwise – to FALSE. If the second symbol is ‘4’ (hex 34, means no errors) analyze the output flag: if no movement was interrupted – clean the port, exit. If movement was interrupt – no cleaning, exit only. If the second symbol is not ‘4’ – report an error, exit.

10. VISA MP-285 GetSet Speed.VI
INPUTS: Speed (I 32, in microns/sec), Duty Cluster – must be wired
OUTPUTS: Speed (I 32, in microns/sec), Duty Cluster

The values by the definition (If the inputs NOT wired):

Input Speed = 0.

NOTES:

· How to put data to the controller. (This information in the manual are very limited) To write speed and resolution to the controller the Velocity command should be used. Format: ‘V’ + one 16 bit unsigned integer (UI) + ‘CR’. MP’s Response: ‘CR’. The oldest bit in this UI is the resolution: bit = 0 Low Resolution, bit = 1 High Resolution. All other bits give the speed. In Low resolution mode speed should not exceed 3000 (dec) microns/sec, in High resolution speed should not exceed 1310 (dec) microns/sec.

· How to read Speed & Resolution from the controller. To read the data ‘s’ command should be used. Format: ‘s’ + ‘CR’. MP’s response: 32 bytes + ‘CR’. (See the manual, page 70) Two bytes, #28 and #29 represents exactly the same word, as described above in previous note.

· The execution of this VI without or with non-positive input speed (speed <= 0) returns the current settings, without any changes.

· Serial read and Word to MP-285 are control internal hex outputs; they are available only on the Panel Window.

BLOCK DIAGRAM

Write ‘s’ + ‘CR’, read 33 bytes. Analyze the last. If it is not ‘CR’ – do nothing, but report an error to the Error Cluster. If it is ‘CR’ – decode the word (bytes#28-29). To analyze the oldest bit – convert the word to the unsigned. Set up Boolean flag: if this word is more 32000 the oldest bit is 1, set up the flag to TRUE. In that case to get the speed from the decoded unsigned word subtract 32786. Otherwise set the flag to FALSE. Now the speed and resolution is readied and decoded. If the current speed is the same as the input speed or input speed <= 0 – do nothing, just return the flag and current speed. If the speed should be recorded, check the input speed (it should not exceed the limit – see note 1), form the correct old bit, convert to string and write the word to the manipulator using ‘V’ command. Check the handshaking ‘CR’. Report an error if necessary.

11. VISA MP-285 GetSet Resolution.VI
INPUTS: Resolution (string, one symbol, ‘H’ or ‘h’ – High, any other – Low), Duty Cluster – must be wired
OUTPUTS: Current Resolution #1 (string, ‘H’ or ’L’), Current Resolution #2 (Boolean, High resolution gives TRUE, Low resolution gives FALSE), Duty Cluster

The values by the definition (If the inputs NOT wired):

Input Resolution = ‘CR’.

NOTES:

· If the input Resolution is not wired or wired with the ‘CR’ symbol, the program will return the current resolution without making any changes. It is a convenient way to get the resolution.

BLOCK DIAGRAM

Write ‘s’ + ‘CR’, read 33 bytes. Analyze the last. If it is not ‘CR’ – do nothing, but report an error to the Error Cluster. If it is ‘CR’ – decode the word (bytes#28-29). To analyze the oldest bit – convert the word to the unsigned. Set up Boolean flag: if this word is more 32000 the oldest bit is 1, set up the flag to TRUE. In that case to get the speed from the decoded unsigned word subtract 32786. Otherwise set the flag to FALSE. Now the speed and resolution is readied and decoded. Decode the resolution input. As a result of decoding, form two Boolean signals. First – b1: is TRUE if input wasn’t wired, or was wired with ‘CR’. Is FALSE in all other cases. Second – b2: Is TRUE if ‘H’ or ‘h’ was entered, is FALSE in any other case. In case b1=TRUE or b2=Current Resolution do nothing, but return the current resolution otherwise set up new resolution: To change the resolution from High to Low just convert to string and record the current speed without the resolution bit; to change the resolution from Low to High check the current speed (it should be less 1310 – see Note1 at GetSet Speed.vi), add 32768 to the speed to set the oldest bit and record the data to the manipulator using ‘V’ command. Conversion from U32 (LabView setting by default) to U16 before the recording is important: only one word should be recorded. Check the handshaking ‘CR’. Report an error if necessary.

12. VISA MP-285 Reset.VI

INPUTS: Duty Cluster – must be wired,

OUTPUTS: Duty Cluster.

NOTES:

· IMPORTANT !!! Never use the Reset command in the middle of the program. After the Reset the only way to communicate with the controller is to close the VISA session, and initialize the port again. (Init.vi) The Reset button on the controller works the same way.

BLOCK DIAGRAM:

Write to the controller ‘r’ and ‘CR’.

13. VISA MP-285 Refresh Display.VI

INPUTS: Duty Cluster – must be wired,

OUTPUTS: Duty Cluster.

NOTES:

· There are two ways to display the current position on the display: 1.To press the ‘Move’ button on the keyboard of manipulator or 2.To execute ‘Refresh Display’ command each time the current readings may change. This driver uses the second way. So, the ‘Refresh Display’ VI was added to the ends of VIs:

i. VISA MP-285 Init.vi

ii. VISA MP-285 Is Position Reached.vi

iii. VISA MP-285 Interrupt Move.vi

iv. VISA MP-285 Set Origin.vi

v. VISA MP-285 Absolute Mode.vi

vi. VISA MP-285 Relative Mode.vi

BLOCK DIAGRAM:

Write ‘n’ and ‘CR’ to the port, read the response, report an error to the Error Cluster if not ‘CR’.

14. VISA MP-285 Set Origin.VI

INPUTS: Duty Cluster – must be wired,

OUTPUTS: Duty Cluster.

NOTES:

· This program sets the current position of manipulator as ‘zero point’.

BLOCK DIAGRAM:

Write ‘o’ and ‘CR’ to the port, read the response, report an error to the Error Cluster if not ‘CR’.

15. VISA MP-285 Absolute Mode.VI

INPUTS: Duty Cluster – must be wired,

OUTPUTS: Duty Cluster.

NOTES: None.

BLOCK DIAGRAM:

Write ‘a’ and ‘CR’ to the port, read the response, report an error to the Error Cluster if not ‘CR’.

16. VISA MP-285 Relative Mode.VI

INPUTS: Duty Cluster – must be wired,

OUTPUTS: Duty Cluster.

NOTES: None.

BLOCK DIAGRAM:

Write ‘b’ and ‘CR’ to the port, read the response, report an error to the Error Cluster if not ‘CR’.

17. VISA MP-285 Step.VI

INPUTS: StepX, StepY, StepZ (all double, microns) Duty Cluster – must be wired,

OUTPUTS: X Position, Y Position, Z Position (all doubles, microns), Duty Cluster.

The values by the definition (If the inputs NOT wired):

StepX = StepY = StepZ = 0.

NOTES:

· This is the only program of relative move.

· Without the input parameters this program returns the current position – like ‘Get Position.vi’.

· It is very convenient to use this VI for the step in one direction (X, Y or Z): only one appropriate input should be wired.

BLOCK DIAGRAM:

Get Position; calculate the final position, Go To final Position, wait until the new position is reached.

18. VISA MP-285 Continue After Pause.VI

INPUTS: Duty Cluster – must be wired,

OUTPUTS: Duty Cluster.

NOTES:

· This program may be used only if the manipulator was programmed and this internal program was interrupted by Interrupt Move command.

BLOCK DIAGRAM:

Write ‘e’ and ‘CR’ to the port, read the response, report an error to the Error Cluster if not ‘CR’.

III. Description of the program for manual control (Manual.VI)

This is a small program, which allows manual execution of all the driver’s VIs and hopefully will help explain how the manipulator works and what is the most efficient way to use the driver’s VI.

BLOCK DIAGRAM:

1. Initialization

2. Major cycle (Until the EXIT key pressed):

2.1. Get Speed and Resolution and display them;

2.2. Cycle of entering the command: wait until any key is pressed, form the integer – key number: 0 – Reset, 1 – Set Resolution, 2 – Set Speed, 3 – Move/Step, 4 – Display Refresh, 5,6 – Reserved, 7 – Relative Mode, 8 – Absolute Mode, 9 – Set Origin.

2.3. Execute entered command. All the commands may be executed by running one appropriate driver’s VI (except Move/Step command). The logic of Move/Step command is obvious from the names of the buttons.

2.4. Check the Error Cluster for the errors.

3. Close VISA session.

Postscriptum:

This driver have been written by

 Dmitry Rogachev in Room Temperature Superconductors Inc.

 In October - December 2001.

 The driver was tested with the MP-285 from SUTTER INSTRUMENT CO,

 Serial # 12193. I believe the manipulator was made in spring - summer 2001.

 I have no much time, but will try to answer any questions about this driver.

PAGE
10

