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based on spatially sparse electrode recordings lack fine-scale spatial infor-
mation about local networks. To address this issue, we developed a BMI 
task in awake, head-restrained mice using two-photon calcium imaging to 
record activity from every neuron in a small field of view (150 × 150 μm). 
We used this calcium-based BMI procedure (CaBMI) to probe fine-scale 
network reorganization in cortical layer (L) 2/3 of both primary motor 
(M1) and somatosensory (S1) cortices during BMI learning.

We trained ten mice expressing the genetically encoded calcium indica-
tor gCaMP6f in L2/3 of M1 or S1 to modulate neural activity in response 
to auditory feedback (Online Methods, Supplementary Fig. 1a and 
Supplementary Movies 1 and 2). This task was adapted from one used 
previously with electrode-based recordings9. Each day, two ensembles 
containing 1–11 neurons each were chosen to control the task (Fig. 1a).  
The ensembles opposed each other, such that increased activity in one 
ensemble (E1) above its baseline increased the pitch of the auditory 
feedback, while increased activity in the other ensemble (E2) decreased 
the pitch. Reward was delivered when a high-pitched target was reached 
within 30 s of trial initiation (hit). Incorrect trials (no target within 30 s) 
were signaled with white noise.

Mice learned the task rapidly (Fig. 1b), with initial rapid improvement 
(1–3 d) followed by slower improvement (4–8 d). Mice performed above 
chance level after 1 d of training (N = 10 mice, P = 0.0036 on day 2, t8 = 
4.07; Fig. 1b). Similar learning occurred using M1 or, more surprisingly, 
S1 (Supplementary Fig. 1b,c). Hit rate increased significantly within 
each daily session (N = 72 sessions, 10 mice, P = 2.6 × 10-5, t43 = 4.7, R2 =  
0.34; Supplementary Fig. 1d). Mice reached a criterion  performance 
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Brain-machine interfaces are not only promising for 
neurological applications, but also powerful for investigating 
neuronal ensemble dynamics during learning. We trained mice 
to operantly control an auditory cursor using spike-related 
calcium signals recorded with two-photon imaging in motor 
and somatosensory cortex. Mice rapidly learned to modulate 
activity in layer 2/3 neurons, evident both across and within 
sessions. Learning was accompanied by modifications of firing 
correlations in spatially localized networks at fine scales.

Brain-machine interfaces (BMIs) have gained great momentum as a thera-
peutic option for patients with limb loss or immobility1–4. In addition, 
BMI tasks provide a powerful approach for studying sensorimotor learn-
ing, as they enable arbitrary mapping between neuronal activity, behav-
ioral output and reward5. Recent work used BMI to demonstrate network 
adaptations in response to output perturbations6, including specific func-
tional changes in output-relevant neurons7,8. However, traditional BMIs 
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Figure 1  Mice learn to intentionally modulate 
calcium dynamics. (a) Example imaging field 
(left) and recordings from cells in E1 and E2 
(top right). Red stars indicate hits. Bottom 
right, mean ensemble fluorescence around hits. 
(b) Performance over 8 d of training. Mean 
performance is shown in black, individual mice 
in gray. Error bars denote s.e.m. Shaded region 
denotes chance performance. (c) Performance 
rapidly dropped compared with normal task 
levels (T) during the contingency degradation 
(CD). Performance returned to previous levels 
during reinstatement (R). Error bars represent 
s.e.m. (d) E1 DF/F increased during the task 
and decreased during CD. Likewise, target hits 
(red) increased in frequency over training and 
decreased during CD. (e) At the beginning of 
day CR2, the mouse initially performed as if the 
previous day’s transform algorithm were still in 
use, but quickly learned the new transform.
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Calcium imaging detects activity even in neurons that are rarely active, 
which are numerous in L2/3 (refs. 12,13). These cells are undersampled 
by extracellular recordings and are often neglected in BMI studies14. 
There was a 30-fold range of baseline spontaneous activity across L2/3 
cells (Fig. 2b). We found the most marked increases in task-related activ-
ity in E1 cells with initially low baseline (t test of low versus more active 
E1 cells, N = 72 cells, P = 8.05 × 10–8, t70 = 5.99; Fig. 2b). Low-baseline 
E2 cells tended to decrease their activity during task-engagement slightly 
more than high-baseline cells (t test of low versus more active E2 cells, 
N = 78 cells, P = 0.02, t76 = –2.37; Fig. 2b), although mean activity 
remained unchanged (Supplementary Fig. 4b). Thus, task learning 
preferentially recruited low-active E1 neurons to become more active. 
These neurons clearly contributed to learning, as learning occurred 
normally when all E1 cells had low or zero baseline activity (N = 46 ses-
sions, 10 mice, P = 0.83, t44 = 1.56; Supplementary Fig. 5a), suggesting 
a role for ‘silent’ L2/3 neurons in learning13. We also found that within 
multi-cell E1 ensembles, multiple cells increased fluorescence around 
hits, including low- and zero-baseline cells, indicating that performance 
was not carried by single neurons (Supplementary Fig. 5b).

level (50% hits) faster across days of training (N = 8 days, 10 mice,  
P = 0.0247, t6 = 2.98, R2 = 0.596; Supplementary Fig. 1e),  suggesting 
that within-session learning occurs faster as between-session learning 
 progresses. As seen previously9, performance was not impaired by lido-
caine injection into the contralateral mystacial pad (N = 4 mice, P = 
0.876, t3 = 0.17) and gross movements were absent preceding target hits, 
indicating that performance does not rely on natural movement and that 
neural activity, particularly in S1, is not driven by whisker reafference 
(Supplementary Fig. 2).

We next asked whether these modulations were sensitive to the action-
outcome contingency10. After mice successfully learned the task, we 
ceased rewarding target hits and instead delivered rewards under a vari-
able interval schedule (contingency degradation). Mice quickly ceased 
responding (N = 5 mice, P = 0.0089, t4 = 4.76; Fig. 1c,d). When reward 
was reinstated using the same E1 and E2 ensembles, mice again performed 
at normal levels (N = 4 mice, P = 0.791, t3 = 0.289; Fig. 1c). Thus, perfor-
mance was sensitive to reward contingency, suggesting the behavior is 
goal directed11. Post hoc analysis of imaging data revealed that E1 activity 
increased during task performance and decreased during degradation 
(Fig. 1d). On a separate day, we performed a contingency reversal (N = 3 
mice) in which E1 and E2 identities were reversed from one day (day CR1) 
to the next (day CR2), requiring mice to reverse ensemble activity patterns 
to obtain reward (Supplementary Fig. 3a). Early during CR2, E2 in one 
example mouse showed clear bursting activity (consistent with its identity 
as E1 on CR1) and E1 showed little activity (consistent with its identity 
as E2 on CR1). This pattern quickly reversed as the mouse learned the 
new contingency (Supplementary Fig. 3a). We compared the hit rate on 
CR2 in one mouse to a simulated hit rate based on the E1/E2 identity and 
transform algorithm from day CR1. The simulation showed initially high 
performance that then dropped to zero, indicating that this mouse initially 
performed according to the learned CR1 transform, but quickly adapted to 
the new CR2 transform (Fig. 1e). Across all mice, the ratio of E1/E2 activ-
ity increased during CR2 (Supplementary Fig. 3b), suggesting that mice 
learn to flexibly up-modulate E1 over E2. Together, these data indicate that 
mice can modulate calcium signals in a contingency-dependent manner 
and that these modulations can be applied to arbitrarily chosen cells.

We next investigated neural changes during learning. Mean DF/F 
increased for E1 cells over the course of individual sessions (N = 20 
time points, 10 mice, P = 1.17 × 10–11, t18 = 15.09, R2 = 0.927; Fig. 2a) 
and decreased during subsequent contingency degradation (N = 20 
time points, 5 mice, P = 0.0029, t18 = –3.44; Supplementary Fig. 4a). In 
contrast, mean DF/F did not significantly change for E2 cells (P = 0.234 
during task, P = 0.13 during contingency degradation; Supplementary 
Fig. 4b,c). This may reflect a bias toward volitional increases, rather 
than decreases, of L2/3 calcium dynamics.

Figure 2  Local network reorganization accompanies neuroprosthetic learning. 
(a) Mean fluorescence increased in E1 cells over the course of a session. Error 
bars represent s.e.m. (b) E1 cells with low baseline activity increased their 
activity more during the task than cells with high baseline activity. E2 cells 
suppressed their activity evenly. Note the logarithmic scale. (c) Activity in E1, 
E2 and indirect cells time-locked to large events in E1 cells. (d) Activity in E1, 
E2 and indirect cells time-locked to large events in E2 cells. (e) Correlations 
increased between output cells (cyan) during the session, with no similar 
increase in correlations between indirect cells (black). *P < 0.05, **P < 
0.001, Bonferroni corrected. Error bars represent s.e.m. (f) Indirect cells near 
output cells had more task-related activity than those far from output cells. 
Circles are individual cells, bars indicate s.e.m. Horizontal lines represent 
the mean. (g) Early in a session (solid lines), target-related modulations in 
indirect cells decreased with distance from E1 cells (blue) and increased with 
distance from E2 cells (green). Later in the session (dashed lines), there were 
no significant modulations in indirect cells, regardless of distance from output 
cells. Shaded areas represent 95% confidence intervals.
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that were more highly spontaneously correlated with E2 cells exhibited 
decreased activity during task engagement compared with cells with 
low spontaneous correlations with E2 (N = 851 cells, P = 0.015, t849 = 
–2.6; Supplementary Fig. 9b). Given the rapid falloff of spontaneous 
correlations with distance, such fine-scale effects might be undetect-
able by electrode-based recording methods (Supplementary Fig. 9c). 
This spatial restriction in activity is similar to sparsening of cortical 
representations during classical conditioning19.

To the best of our knowledge, our results represent the first demon-
stration that mice can volitionally modulate calcium dynamics in L2/3 
of M1 and S1, and our use of imaging enabled dissection of learning-
related network modifications during BMI with unprecedented spatial 
resolution (~10–100 µm). Notably, the CaBMI procedure provides a 
powerful tool for investigating the spatial extent of functional and struc-
tural plasticity during neuroprosthetic learning.

METHODS
Methods and any associated references are available in the online 
 version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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To examine higher level network dynamics during learning, we 
first calculated mean cross-correlation histograms time-locked to 
the occurrence of large fluorescence events in either E1 or E2 (output 
cells, Online Methods). Output cells developed coordinated, synchro-
nous activity with other cells in the same ensemble (Fig. 2c,d). E2 also 
developed a tendency to spike before E1 (Fig. 2c,d), likely reflecting a 
strategy of bursting E2 for trial initiation, followed by bursting of E1 for 
target achievement. This coordinated activity was not present in non-
output cells that were simultaneously imaged (indirect cells; Fig. 2c,d). 
This prompted us to investigate correlations between cells over the 
course of individual sessions. Correlations between output cells in the 
same ensemble increased significantly during the session (N = 5 time 
points, 10 mice, P = 0.0198, t3 = 4.55, R2 = 0.874), whereas correlations 
between indirect cells did not (N = 5 time points, 10 mice, P = 0.138, t3 =  
2.01; Fig. 2e), and this enhancement was observed in individual mice 
(Supplementary Fig. 6a). Output cells also became more correlated 
over days of training, even though the neural composition of ensem-
bles changed (N = 8 d, 10 mice, P = 0.011, t6 = 3.59; Supplementary  
Fig. 6b). This is analogous to increased correlations of functionally 
related cells during motor learning15 and could reflect millisecond-
precision coupling that has been demonstrated with electrodes16.

We next examined how fine-scale (~10–100 μm) spatial organization of 
ensembles affects learning. Performance did not vary systematically with 
distance between output ensembles (measured by E1 and E2 centroids; 
N = 71 sessions, 10 mice, P = 0.95, t69 = 0.056), but did vary with the 
size of ensembles: mice performed better with fewer neurons, suggesting 
that it was difficult to maintain coordinated control over large ensembles 
(Supplementary Fig. 7). In addition, high baseline correlations between 
ensembles predicted worse performance (Supplementary Fig. 8).

Learning was accompanied by interesting dynamics in local networks 
surrounding the output ensembles. For each indirect cell, we calculated 
the correlation between its mean fluorescence and a moving average of 
the mouse’s instantaneous hit rate. We found that activity in indirect 
cells near E1 (<50 µm away) was significantly more correlated with 
hits than activity in distant indirect cells (>100 µm away; N = 251 cells,  
10 mice, P = 0.048, t249 = 1.98; Fig. 2f). Next, we calculated mean target-
related modulations in indirect cells for early and late epochs within 
daily sessions. Early in sessions, indirect cells increased DF/F around 
hits compared with late in sessions (t test early versus late modula-
tions, 437 cells, 5 mice, P = 3.94e-4, t(436) = 3.57; Fig. 2g). This was 
evident in cells close to E1 compared to distant cells (t-test early versus 
late modulations in close cells, 172 cells, 5 mice, P = 0.001, t171 = 3.32;  
t test early versus late modulations in distant cells, 265 cells, 5 mice,  
P = 0.08, t264 = 1.72). Thus, early in the session mice up-modulate 
activity in a local network surrounding E1 cells7, but, as the session 
progresses, this task-related modulation in indirect cells disappears, 
such that mainly output cells exhibit task-related increases in activity. 
This suggests that mice are able to hone in on individual output cells 
during learning and precisely modulate these cells for efficient target 
achievement17. However, even late in sessions, indirect neurons that 
were more highly spontaneously correlated with E1 cells, and therefore 
more likely to be embedded in the same local subnetwork18, exhib-
ited increased activity during task engagement compared with cells 
with low spontaneous correlations with E1 (N = 851 cells, 10 mice,  
P = 2.35 × 10–5, t849 = 4.26; Supplementary Fig. 9a). Indirect neurons 
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(either by decreased activity in E1 or increased activity in E2), which reset the 
tone to its starting pitch.

Chance levels of performance (Fig. 1b and Supplementary Fig. 1b,c) were 
determined by running the animal on the task without reward or auditory feed-
back. Hits resulted when spontaneous fluctuations were large enough push the 
decoder to the target frequency. Failure to hit a target in 30 s resulted in a miss. 
The chance region, plotted in gray in Figure 1b, represents the mean chance 
performance and s.e.m., pooled over all animals and all days.

ROIs were extracted from recorded neural data in real time. These ROIs were 
entered into custom routines in MATLAB (MathWorks) that translated fluores-
cence levels into the appropriate feedback pitch and played the pitch on speakers 
mounted on two sides of the imaging platform. Frequencies used for auditory 
feedback ranged from 1–24 kHz in quarter-octave increments. When a target 
was hit, a MATLAB-controlled Data Acquisition board (National Instruments) 
triggered the operant box to supply the appropriate reward to rodents. Each daily 
training session lasted 48 ± 2 min (71 ± 4 trials).

Data analysis. All analyses were performed with custom written routines in 
MATLAB. Recorded movies were spatially aligned using the dftregistration rou-
tine in MATLAB24. ROIs were manually selected to include the soma of neurons 
that appeared consistently throughout all recorded movies. Fluorescence traces 
were extracted from each ROI and data is presented as the relative change in 
fluorescence, DF/F.

No statistical methods were used to pre-determine sample sizes, but our 
sample sizes are similar to those generally employed in the field. For analyses of 
behavioral performance during the contingency degradation (Fig. 1c), the first 
ten trials of a session were removed before calculating performance to exclude 
the transition period and reflect the animal’s performance once the animal had 
fully learned the new reward contingency. For all sliding window analyses, ses-
sions were divided into an equal number of bins to determine the window size, 
and the step size was a fraction of this window size.

For the data plotted in Figure 2g, mean z-score values during task engage-
ment were binned by distance from E1 or E2 centroid. The first bin included 
all cells from 0–50 μm from the centroid of the output ensemble (close cells), 
the second bin included all cells 50–100 μm from the output ensemble, and the 
final bin including all cells 100+ μm from the output ensemble. ‘Distant’ cells 
included all cells at a distance of greater than 50 μm from the E1 centroid. We 
included data from 3 d late in training from 5 mice where 20 or more indirect 
cells were apparent in the field.

For the cross-correlation histograms, fluorescence traces from output cells 
were z-scored and values above 3 s.d. were considered an event. The first time 
point in which fluorescence values crossed this threshold during each event was 
used for time-locking. Fluorescence values in other populations of cells were 
then averaged around these indices.

In all cases, multiple comparisons were controlled for using the Bonferroni 
correction. Differences between groups were tested with t tests. To evaluate 
trends over time, we tested whether the slope of a fitted linear regression was 
significantly different from zero. All statistical tests were two-tailed.

For testing the activity modulations for low versus more active cell groups 
in Figure 2b, the high active group included cells with spontaneous event rate 
greater than the median spontaneous event rate, the low active group included 
cells with spontaneous event rate less than the median.

Data distributions were assumed to be normal, but this was not formally 
tested. Data collection and analysis were not performed blind to the experimen-
tal conditions. Randomization was not performed, as the experiment primarily 
involved within-animal comparisons and there were no multiple experimental 
cohorts. A Supplementary Methods Checklist is available.
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ONLINE METHODS
Mice. All animal procedures were performed in accordance with University of 
California Berkeley Animal Care and Use Committee regulations. 6 C57BL/6J 
and 4 CD1 male wild-type mice were used in these experiments, ranging in age 
from postnatal day 30–45. Mice were housed with a 12-h dark, 12-h light reversed 
light cycle. All behavioral tests were performed in the same cohort of mice.

Surgery. Mice were anesthetized using 2% isoflurane (vol/vol) and placed 
in a stereotaxic apparatus. Body temperature was maintained at 37 °C using a 
 feedback-controlled heating pad (FHC, 40-90-8D) and a small incision was made 
in the scalp. The skull was cleaned and a steel headplate was affixed over M1 
(1 mm rostral, 1 mm lateral to Bregma) or S1 (1 mm caudal, 3 mm lateral to 
Bregma) using Metabond dental cement (Parkell, S380). A 3-mm craniotomy 
was opened over M1 or S1, and 200 nl of AAV2.9 Syn.GCamp6f.WPRE.SV40 
(ref. 20) (University of Pennsylvania Vector Core) was injected 250 μm below the 
pia using a Nanoliter 2000 injector (World Precision Instruments). The tracer was 
delivered using a pulled glass pipette (tip diameter = 40–60 μm) at a rate of 40 nl 
min–1. The pipette was left in the brain for 10 min after completion of the injection 
to prevent backflow. After the pipette was removed, the brain was covered with 
silicone oil (Sigma product #181138) and a glass coverslip was affixed to the skull 
with dental cement, as previously described21. We allowed 2 weeks for recovery 
and gCaMP6f expression.

Two-photon imaging. In vivo imaging was performed with a Moveable Objective 
Microscope (Sutter) using a Chameleon Ultra Ti:Sapphire mode-locked laser 
(Coherent) tuned to 900 nm. Photons were collected with a Hamamatsu photo-
multiplier tube (H10770PA-40) using a Nikon objective (16×, 0.8 NA). Animals 
were head-fixed on a custom-made spring mounted imaging platform and placed 
under the two-photon microscope. This setup allowed them to run freely, and 
their movements were recorded by an accelerometer fixed to the underside of the 
platform. Frames of 128 × 512 pixels (~160 × 160 μm) were collected at 7.23 Hz  
using ScanImage software22 at 130–180 μm below the pia. The same imaging 
fields were used every day, localized by landmarks in the surface blood vessels. 
Imaged fields were stable over the course of training, and because the cortex was 
stabilized by a snugly fitting coverslip, only severe movements caused motion 
artifacts. Motion correction for slow drift in the imaging field was performed 
manually. Any period of gross movement during the task that caused cells to move 
out of their regions of interest (ROIs) resulted in poor task performance, as DF/F 
of E1 was reduced. In this sense, mice were punished for excessive movement and 
seem to have learned to remain still during the task (Supplementary Fig. 2c).

Behavioral task. Two ensembles of 1–11 single cells each were chosen for inclu-
sion in the output population. Cells with bright nuclei, indicating overexpres-
sion, were excluded, as were cells with many, poorly separable calcium events, 
an activity pattern indicative of fast-spiking interneurons. No other selection 
criteria were used to partition the recorded cells into each ensemble. We also 
ensured that many cells with good signal were included in the indirect popula-
tion to enable a proper comparison. The cells assigned to the output population 
were changed on some days.

Ensemble activity was measured as mean DF/F for all component neurons. 
Fluorescence values from these ensembles were binned in 200-ms bins and 
entered into an online transform algorithm that related neural activity to the 
pitch of an auditory cursor. By modulating activity in these ensembles, rodents 
controlled the pitch of the cursor. The modulations that we required of the 
mice were calibrated daily based on a baseline recording session of roughly  
2 min. Next, 10–15 min of spontaneous baseline activity was recorded to assess 
chance levels of performance. Fluorescence values were smoothed by a moving 
average of the past three time points. Changes in the frequency of the auditory 
cursor were binned in quarter-octave intervals to match rodent psychophysi-
cal discrimination thresholds23. Mice then had to modulate calcium dynamics 
in these neuronal ensembles to move the cursor to a high-pitched target tone 
that was associated with a 10% sucrose (wt/vol) solution reward. A trial was 
marked incorrect if a target was not achieved within 30 s of trial initiation.  
A trial was self-initiated when E1 and E2 activity returned to baseline levels 
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